Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137340

RESUMO

We report two new cyanido-bridged Fe(II)-Ag(I) coordination polymers using different acetylpyridine isomers, {Fe(4acpy)2[Ag(CN)2]2} 1 and {Fe(3acpy)[Ag(CN)2]2} 2 (4acpy = 4-acetylpyridine; 3acpy = 3-acetylpyridine) displaying thermally and photoinduced spin crossover (SCO). In both cases, the acetylpyridine ligand directs the coordination polymer structure and the SCO of the materials. Using 4-acetylpyridine, a two-dimensional (2D) structure is observed in 1 made of layers stacked on each other by silver-ketone interactions leading to a complete SCO and reversible thermally and photoswitching of the magnetic and optical properties. Changing the acetyl group to a 3-position, a completely different structure is obtained for 2. The unexpected coordination of the carbonyl group to the Fe(II) centers induces a three-dimensional (3D) structure, leading to statistical disorder around the Fe(II) with three different coordination spheres, [N6], [N4O2], and [N5O]. This disorder gives rise to an incomplete thermally induced SCO with a poor photoswitchability. These results demonstrate that the choice of the acetyl position on the pyridine dictates the structural characteristics of the compounds with a direct impact on the SCO behavior. Remarkably, this work opens interesting perspectives for the future design of Fe-Ag cyanido coordination polymers with judiciously substituted pyridine ligands to tune the thermally and photoinduced SCO properties.

2.
Mikrochim Acta ; 191(9): 558, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177820

RESUMO

An innovative supramolecular architecture is reported for bienzymatic glucose biosensing based on the use of a nanohybrid made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with a Schiff base modified with two phenylboronic acid residues (SB-dBA) as platform for the site-specific immobilization of the glycoproteins glucose oxidase (GOx) and horseradish peroxidase (HRP). The analytical signal was obtained from amperometric experiments at - 0.050 V in the presence of 5.0 × 10-4 M hydroquinone as redox mediator. The concentration of GOx and HRP and the interaction time between the enzymes and the nanohybrid MWCNT-SB-dBA deposited at glassy carbon electrodes (GCEs) were optimized through a central composite design (CCD)/response surface methodology (RSM). The optimal concentrations of GOx and HRP were 3.0 mg mL-1 and 1.50 mg mL-1, respectively, while the optimum interaction time was 3.0 min. The bienzymatic biosensor presented a sensitivity of (24 ± 2) × 102 µA dL mg-1 ((44 ± 4) × 102 µA M-1), a linear range between 0.06 mg dL-1 and 21.6 mg dL-1 (3.1 µM-1.2 mM) (R2 = 0.9991), and detection and quantification limits of 0.02 mg dL-1 (1.0 µM) and 0.06 mg dL-1 (3.1 µM), respectively. The reproducibility for five sensors prepared with the same MWCNT-SB-dBA nanohybrid was 6.3%, while the reproducibility for sensors prepared with five different nanohybrids and five electrodes each was 7.9%. The GCE/MWCNT-SB-dBA/GOx-HRP was successfully used for the quantification of glucose in artificial human urine and commercial human serum samples.


Assuntos
Técnicas Biossensoriais , Ácidos Borônicos , Enzimas Imobilizadas , Glucose Oxidase , Peroxidase do Rábano Silvestre , Nanotubos de Carbono , Bases de Schiff , Nanotubos de Carbono/química , Bases de Schiff/química , Técnicas Biossensoriais/métodos , Ácidos Borônicos/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose/análise , Eletrodos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Glicemia/análise
3.
Pharmaceutics ; 16(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39065553

RESUMO

Core-shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. In this study, we present a novel core-shell micromotor that combines magnetic and photothermal properties. It is synthesized via the template-assisted electrodeposition of iron (Fe) and reduced graphene oxide (rGO) on a microtubular pore-shaped membrane. The resulting Fe-rGO micromotor consists of a core of oval-shaped zero-valent iron nanoparticles with large magnetization. At the same time, the outer layer has a uniform reduced graphene oxide (rGO) topography. Combined, these Fe-rGO core-shell micromotors respond to magnetic forces and near-infrared (NIR) light (1064 nm), achieving a remarkable photothermal conversion efficiency of 78% at a concentration of 434 µg mL-1. They can also carry doxorubicin (DOX) and rapidly release it upon NIR irradiation. Additionally, preliminary results regarding the biocompatibility of these micromotors through in vitro tests on a 3D breast cancer model demonstrate low cytotoxicity and strong accumulation. These promising results suggest that such Fe-rGO core-shell micromotors could hold great potential for combined photothermal therapy.

4.
Talanta ; 270: 125520, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147722

RESUMO

We report a nanohybrid material obtained by non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with the new ligand (((1E,1'E)-(naphthalene-2,3-diylbis(azaneylylidene))bis(methaneylylidenedene)) bis(4-hydroxy-3,1-phenylene))diboronic acid (SB-dBA), rationally designed to mimic some recognition properties of biomolecules like concanavalin A, for the development of electrochemical biosensors based on the use of glycobiomolecules as biorecognition element. We present, as a proof-of-concept, a hydrogen peroxide biosensor obtained by anchoring horseradish peroxidase (HRP) at a glassy carbon electrode (GCE) modified with the nanohybrid prepared by sonication of 2.0 mg mL-1 MWCNTs and 0.50 mg mL-1 SB-dBA in N,N-dimethyl formamide (DMF) for 30 min. The hydrogen peroxide biosensing was performed at -0.050 V in the presence of 5.0 × 10-4 M hydroquinone. The analytical characteristics of the resulting biosensor are the following: linear range between 0.175 µM and 6.12 µM, detection limit of 58 nM, and reproducibility of 2.0 % using the same nanohybrid (6 biosensors), and 9.0 % using three different nanohybrids. The sensor was successfully used to quantify hydrogen peroxide in enriched milk and human blood serum samples and in a commercial disinfector.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Ácidos Borônicos , Peróxido de Hidrogênio/química , Bases de Schiff , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Peroxidase do Rábano Silvestre/química , Eletrodos , Técnicas Eletroquímicas
5.
Pharmaceutics ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36678639

RESUMO

Skin has a preventive role against any damage raised by harmful microorganisms and physical and chemical assaults from the external environment that could affect the body's internal organs. Dermis represents the main section of the skin, and its contribution to skin physiology is critical due to its diverse cellularity, vasculature, and release of molecular mediators involved in the extracellular matrix maintenance and modulation of the immune response. Skin structure and complexity limit the transport of substances, promoting the study of different types of nanoparticles that penetrate the skin layers under different mechanisms intended for skin illness treatments and dermo-cosmetic applications. In this work, we present a detailed morphological description of the dermis in terms of its structures and resident cells. Furthermore, we analyze the role of the dermis in regulating skin homeostasis and its alterations in pathophysiological conditions, highlighting its potential as a therapeutic target. Additionally, we describe the use of nanoparticles for skin illness treatments focused on dermis release and promote the use of metal-organic frameworks (MOFs) as an integrative strategy for skin treatments.

6.
ACS Omega ; 5(35): 22238-22247, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923781

RESUMO

In this work, we report a new octanuclear cluster based on FeIII and the ligand 1H-imidazole-4,5-dicarboxylic acid, [Et3NH]12[Fe8(IDC)12]·10DMF·13H2O (1), with a metal core containing eight FeIII connected by only one type of organic ligand. A peak at 573 m/z in the mass spectra of the compound suggests the adduct species {[Fe8(IDC)12]+8H}4-. By X-ray photoelectron spectroscopy, the oxidation state of the iron cation was confirmed to be 3+, also identifying the presence of a quaternary nitrogen species, which act as a countercation of the anionic metal core [Fe8(IDC)12]12-. Mössbauer spectra recorded at different temperatures show an isomer shift and quadrupole splitting parameters that confirm the existence of only FeIII-HS in the structure of 1. X-ray analysis reveals that compound 1 crystallizes in the orthorhombic system space group Ibam, confirming a molecular cluster structure with an almost regular cube as geometry, with the FeIII atoms located at the corners of the cube and connected by µ-1κ2 N,O:2κ2 N',O‴-IDC3- bridges. Additionally, the magnetic measurements reveal a weak antiferromagnetic coupling in the Fe8 III coordination cluster (J = -3.8 cm-1). To the best of our knowledge, 1 is the first member of the family of cubes assembled with 1H-imidazole-4,5-dicarboxylic acid and FeIII cation, exhibiting high pH stability over a broad pH range, making it an ideal candidate for the design of supramolecular structures and metal-organic frameworks.

7.
RSC Adv ; 10(57): 34712-34718, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35514389

RESUMO

Cobalt (Co) is one of the most promising materials in nanotechnology due to its superior magnetic properties. However, due to the high cytotoxicity of cobalt, the activity in biological systems has been little studied. In this work, we report the structural, morphological, and magnetic properties of cobalt nanoparticles stabilized with an organic layer (Co0@C-NPs) and its potential antimicrobial activity. The Co0@C-NPs were obtained from solvothermal conditions and characterized by X-ray powder diffraction, electronic microscopy, and magnetic measurements. The organic layer was analysed by thermogravimetric analysis, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and Fourier Transform Infrared Spectroscopy. From the TEM image, an organic coating layer is observed around Co0 where this coating prevents NPs from oxidation allowing it to remain stable until 400 °C. Surface composition studies by SEM/EDS allowed the identification of carbon, oxygen, and cobalt elements present in the organic layer. This result was corroborated later by FITR analysis. Preliminary antibacterial properties were also investigated, which showed that the cobalt nanoparticles are active against Staphylococcus aureus after 1 h of exposure. The superparamagnetic properties and organic coating Co0@C-NPs could be biocompatible with biological systems, but more research is needed to apply these nanoparticles in biomedical products.

8.
Chem Commun (Camb) ; 55(99): 14992-14995, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31777875

RESUMO

The first family of hybrid mononuclear organic-inorganic lanthanoid complexes is reported, based on [PW11O39]7- and 1,10-phenanthroline ligands. This hybrid approach causes a dramatic improvement of the relaxation time (×1000) with a decrease of the optimal field while maintaining the Ueff of the inorganic analogues.

9.
Chem Commun (Camb) ; 55(87): 13183, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31624821

RESUMO

Retraction of 'Ni2[LnCl6] (Ln = EuII, CeII, GdII): the first LnII compounds stabilized in a pure inorganic lattice' by Bianca Baldo et al., Chem. Commun., 2018, 54, 7531-7534.

10.
Molecules ; 24(1)2018 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30583556

RESUMO

Two new aromatic organo-imido polyoxometalates with an electron donor triazole group ([n-Bu4N]2[Mo6O18NC6H4N3C2H2]) (1) and a highly conjugated fluorene ([n-Bu4N]2[Mo6O18NC13H9]) (2) have been obtained. The electrochemical and spectroscopic properties of several organo-imido systems were studied. These properties were analysed by the theoretical study of the redox potentials and by means of the excitation analysis, in order to understand the effect on the substitution of the organo-imido fragment and the effect of the interaction to a metal centre. Our results show a bathochromic shift related to the charge transfer processes induced by the increase of the conjugated character of the organic fragment. The cathodic shift obtained from the electrochemical studies reflects that the electronic communication and conjugation between the organic and inorganic fragments is the main reason of this phenomenon.


Assuntos
Estrutura Molecular , Eletricidade Estática , Compostos de Tungstênio/química , Técnicas de Química Sintética , Eletroquímica , Modelos Moleculares , Conformação Molecular , Compostos de Tungstênio/síntese química
11.
Chem Commun (Camb) ; 54(54): 7531-7534, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29926015

RESUMO

Here we report the first examples of 3d-4f compounds based on LnII cations. We have obtained a series of Ni2[LnCl6] isostructural compounds where LnII = Ce 1, Eu 2 and Gd 3 which were characterized in a cubic crystalline system with a Fm3[combining macron]m space group. Magnetic and optical characterization was also performed on this new class of compounds.

12.
ACS Omega ; 3(1): 801-807, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457930

RESUMO

We report the synthesis and structural diversity of Zn(II) metal-organic framework (MOF) with in situ formation of tetrazole ligand 3-ptz [3-ptz = 5-(3-pyridyl)tetrazolate] as a function pH. By varying the initial reaction pH, we obtain high-quality crystals of the noncentrosymmetric three-dimensional MOF Zn(3-ptz)2 , mixed phases involving the zinc-aqua complex [Zn(H2O)4(3-ptz)2]·4H2O, and two-dimensional MOF crystals Zn(OH)(3-ptz) with a tunable microrod morphology, keeping reaction time, temperature, and metal-ligand molar ratio constant. Structures are characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and UV-vis spectroscopy. We discuss the observed structural diversity in terms of the relative abundance of hydroxo-zinc species in solution for different values of pH.

13.
Dalton Trans ; 46(26): 8611-8620, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28644503

RESUMO

The spectroscopic, electrochemical and photophysical properties of the first ReI organometallic organoimido-polyoxometalate complex [n-Bu4N][Mo6O18NC6H4-CH2-N3C2H2-Re-phen(CO)3] compared with all fragments are reported. The UV-Vis spectra are analysed using experimental and theoretical tools. In contrast to the reported studies in the literature, our results show that a new more intense band is present in the spectra of the hybrid ligand obscuring the intra-polyanion charge transfer. The electrochemical results show that the strong acceptor character of the polyoxometalate fragment is quenched by the condensation of the phenyl-triazole molecule.

14.
Inorg Chem ; 55(13): 6405-13, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27299178

RESUMO

Single-molecule magnet (SMM) properties of transition-metal complexes coordinated to lacunary polyoxometalates (POM) are studied by means of state of the art ab initio methodology. Three [M(γ-SiW10O36)2] (M = Mn(III), Fe(III), Co(II)) complexes synthesized by Sato et al. (Chem. Commun. 2015, 51, 4081-4084) are analyzed in detail. SMM properties for the Co(II) and Mn(III) systems can be rationalized due to the presence of low-energy excitations in the case of Co(II), which are much higher in energy in the case of Mn(III). The magnetic behavior of both cases is consistent with simple d-orbital splitting considerations. The case of the Fe(III) complex is special, as it presents a sizable demagnetization barrier for a high-spin d(5) configuration, which should be magnetically isotropic. We conclude that a plausible explanation for this behavior is related to the presence of low-lying quartet and doublet states from the iron(III) center. This scenario is supported by ab initio ligand field analysis based on complete active space self-consistent field results, which picture a d-orbital splitting that resembles more a square-planar geometry than an octahedral one, stabilizing lower multiplicity states. This coordination environment is sustained by the rigidity of the POM ligand, which imposes a longer axial bond distance to the inner oxygen atom in comparison to the more external, equatorial donor atoms.

15.
Sci Rep ; 6: 23847, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27033418

RESUMO

The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin Fe(III) ferromagnetically coupled and 24 diamagnetic low-spin Fe(II) ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic Fe(II) cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic Fe(III) centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

16.
Dalton Trans ; 44(28): 12493-6, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26087017

RESUMO

M'0.2Mn0.8PS3·0.25H2O materials are obtained by a mild microwave assisted reaction (M' = Co(II), Ni(II), Cu(II), Zn(II)), which permitted us to obtain the first copper(ii) bimetallic phase. All these materials have a lower energy gap and antiferromagnetic interactions with lower values of the Weiss constant, than that of the pristine phase MnPS3.

17.
Inorg Chem ; 54(8): 3805-14, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25831075

RESUMO

We report the crystal face indexing and molecular spatial orientation, magnetic properties, electron paramagnetic resonance (EPR) spectra, and density functional theory (DFT) calculations of two previously reported oxovanadium phosphates functionalized with Cu(II) complexes, namely, [Cu(bipy)(VO2)(PO4)]n (1) and [{Cu(phen)}2(VO2(H2O)2)(H2PO4)2 (PO4)]n (2), where bipy = 2,2'-bipyridine and phen = 1,10-phenanthroline, obtained by a new synthetic route allowing the growth of single crystals appropriate for the EPR measurements. Compounds 1 and 2 crystallize in the triclinic group P1̅ and in the orthorhombic Pccn group, respectively, containing dinuclear copper units connected by two -O-P-O- bridges in 1 and by a single -O-P-O- bridge in 2, further connected through -O-P-O-V-O- bridges. We emphasize in our work the structural aspects related to the chemical paths that determine the magnetic properties. Magnetic susceptibility data indicate bulk antiferromagnetism for both compounds, allowing to calculate J = -43.0 cm(-1) (dCu-Cu = 5.07 Å; J defined as Hex(i,j) = -J Si·Sj), considering dinuclear units for 1, and J = -1.44 cm(-1) (dCu-Cu = 3.47 Å) using the molecular field approximation for 2. The single-crystal EPR study allows evaluation of the g matrices, which provide a better understanding of the electronic structure. The absence of structure of the EPR spectra arising from the dinuclear character of the compounds allows estimation of weak additional exchange couplings |J'| > 0.3 cm(-1) for 1 (dCu-Cu = 5.54 Å) and a smaller value of |J'| ≥ 0.15 cm(-1) for 2 (dCu-Cu = 6.59 Å). DFT calculations allow evaluating two different exchange couplings for each compound, specifically, J = -36.60 cm(-1) (dCu-Cu = 5.07 Å) and J' = 0.20 cm(-1) (dCu-Cu =5.54 Å) for 1 and J = -1.10 cm(-1) (dCu-Cu =3.47 Å) and J' = 0.01 cm(-1) (dCu-Cu = 6.59 Å) for 2, this last value being in the range of the uncertainties of the calculations. Thus, these values are in good agreement with those provided by magnetic and single-crystal EPR measurements.


Assuntos
Complexos de Coordenação/química , Cobre/química , Fosfatos/química , Teoria Quântica , Vanadatos/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Fenômenos Magnéticos , Modelos Moleculares
18.
Dalton Trans ; 43(37): 14132-41, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25135620

RESUMO

In the present work, the synthesis and structural characterization of four new polyoxovanadoborate (BVO) frameworks based on the [V12B18O60H6](10-) polyanion are reported: (NH4)8(1,3-diapH2)[V12B18O60H6]·5H2O (1), K8(NH4)2[V12B18O60H6]·18H2O (2), K10[V12B18O60H6]·10H2O (3) and K8Cs2[V12B18O60H6]·10H2O (4). A global antiferromagnetic behaviour is observed for these 10V(IV)/2V(V) mixed valence clusters. The magnetic data of 1, 2 and 3, which present different countercation environments, show that 1 is more coupled than 2 and 3. DFT calculations show that the positive charges strongly influence the polarization mechanism of the spin density of the vanadyl groups and the extent of the magnetic orbitals, therefore corroborating the experimental observation of the quenching effect of the magnetic coupling between vanadium centres of 2 and 3.

19.
Acta Crystallogr C ; 69(Pt 11): 1344-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24192186

RESUMO

In the structure of the title compound, {[Cu2(C10H2O8)(H2O)6]·4H2O}n, the benzene-1,2,4,5-tetracarboxylate ligand, (btec)(4-), is located on a crystallographic inversion centre in a µ4-coordination mode. The coordination environment of each pentacoordinated Cu(II) centre is square pyramidal (SBP), formed by three water molecules and two carboxylate O atoms from two different (btec)(4-) ligands. The completely deprotonated (btec)(4-) ligand coordinates in a monodentate mode to four Cu(II) atoms. The alternation of (btec)(4-) ligands and SBP Cu(II) centres leads to the formation of a planar two-dimensional covalent network of parallelograms, parallel to the ab plane. Hydrogen bonds between a basal water molecule and an apical one from an adjacent [Cu(btec)0.5(H2O)3] unit exist in the intralayer space. Hydrogen bonds are also present between the two-dimensional network and the water molecules filling the channels in the structure.


Assuntos
Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Estrutura Molecular
20.
Inorg Chem ; 52(15): 8369-77, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23883164

RESUMO

An unusual and unique conformation of a paddle wheel type binuclear copper(II) complex containing acetate and acetamido ligands, {Cu2(µ2-O2CCH3)4}(OCNH2CH3) (1), was obtained by solvothermal synthesis. The structural characterization of this compound shows that the apical (acetamido) ligands are disposed at a 62° dihedral angle, generating a special conformation as a consequence of the synthetic method used. This conformation has not been reported in other paddle wheel copper(II) tetraacetate compounds. Electron paramagnetic resonance (EPR) spectra of powder samples of (1) were obtained at 9.5 and 33.8 GHz, while single crystal spectra were obtained at 33.8 GHz with a B0 applied in three orthogonal planes. The fit of the single crystal experimental data allowed gave g∥ = 2.345 ± 0.003, and g⊥ = 2.057 ± 0.005. The angular variation of the EPR line allows evaluation of the fine structure of (1), giving D = -0.337 ± 0.002 cm(-1) and E = -0.005 ± 0.001 cm(-1). The line width angular dependence, used together with the Anderson model and Kubo-Tomita theory, permitted the interdimer interaction to be evaluated as |J'| = (0.051 ± 0.002) cm(-1). Using the powder spectral temperature dependence it was possible to evaluate the intradinuclear exchange coupling constan J0 as -101 ± 2 cm(-1), which is considerably lower than that reported for other analogous copper(II) tetraacetate paddle wheel compounds (Cu(II)-PW), showing the remarkable effect of the conformation of the terminal ligands on the magnetic interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA