Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 173: 233-241, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300829

RESUMO

In this work, we aimed at improved viability and growth of the microalga Chlamydomonas reinhardtii in transparent silica hydrogels based on low-ethanol, low-sodium and low-propylamine synthesis. Investigation into replacement of conventional base KOH by buffers dipotassium phosphate and tris(hydroxymethyl)aminomethane along with increased precursor concentrations yielded an aqueous synthesis route which provided a gelation within 10 min, absorptions below 0.1 and elastic moduli of 0.04-4.23 kPa. The abrasion resistance enhanced by 41% compared to calcium alginate hydrogels and increased to 70-85% residual material on addition of chitosan. Entrapment of microalgae in low-sodium and low-propylamine silica hydrogels maintained the PSII quantum yield above 0.3 and growth rates of 0.23 ± 0.01 d-1, similarly to cells entrapped in calcium alginate. These promising results pave the way for the entrapment of sensitive, photosynthetically active and growing cells for in robust biotechnological applications.


Assuntos
Materiais Biocompatíveis/química , Células Imobilizadas/efeitos dos fármacos , Chlamydomonas reinhardtii/efeitos dos fármacos , Hidrogéis/química , Fotossíntese/efeitos dos fármacos , Alginatos/química , Materiais Biocompatíveis/farmacologia , Soluções Tampão , Células Imobilizadas/citologia , Quitosana/química , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Módulo de Elasticidade , Hidrogéis/farmacologia , Fosfatos/química , Compostos de Potássio/química , Dióxido de Silício/química , Trometamina/química
2.
Front Plant Sci ; 8: 1347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824682

RESUMO

The protein superfamily of short-chain dehydrogenases/reductases (SDR), including members of the atypical type (aSDR), covers a huge range of catalyzed reactions and in vivo substrates. This superfamily also comprises isoflavone reductase-like (IRL) proteins, which are aSDRs highly homologous to isoflavone reductases from leguminous plants. The molecular function of IRLs in non-leguminous plants and green microalgae has not been identified as yet, but several lines of evidence point at their implication in reactive oxygen species homeostasis. The Chlamydomonas reinhardtii IRL protein IFR1 was identified in a previous study, analyzing the transcriptomic changes occurring during the acclimation to sulfur deprivation and anaerobiosis, a condition that triggers photobiological hydrogen production in this microalgae. Accumulation of the cytosolic IFR1 protein is induced by sulfur limitation as well as by the exposure of C. reinhardtii cells to reactive electrophile species (RES) such as reactive carbonyls. The latter has not been described for IRL proteins before. Over-accumulation of IFR1 in the singlet oxygen response 1 (sor1) mutant together with the presence of an electrophile response element, known to be required for SOR1-dependent gene activation as a response to RES, in the promoter of IFR1, indicate that IFR1 expression is controlled by the SOR1-dependent pathway. An implication of IFR1 into RES homeostasis, is further implied by a knock-down of IFR1, which results in a diminished tolerance toward RES. Intriguingly, IFR1 knock-down has a positive effect on photosystem II (PSII) stability under sulfur-deprived conditions used to trigger photobiological hydrogen production, by reducing PSII-dependent oxygen evolution, in C. reinhardtii. Reduced PSII photoinhibition in IFR1 knock-down strains prolongs the hydrogen production phase resulting in an almost doubled final hydrogen yield compared to the parental strain. Finally, IFR1 knock-down could be successfully used to further increase hydrogen yields of the high hydrogen-producing mutant stm6, demonstrating that IFR1 is a promising target for genetic engineering approaches aiming at an increased hydrogen production capacity of C. reinhardtii cells.

3.
Microb Cell Fact ; 11: 144, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23113930

RESUMO

BACKGROUND: High-throughput methods are widely-used for strain screening effectively resulting in binary information regarding high or low productivity. Nevertheless achieving quantitative and scalable parameters for fast bioprocess development is much more challenging, especially for heterologous protein production. Here, the nature of the foreign protein makes it impossible to predict the, e.g. best expression construct, secretion signal peptide, inductor concentration, induction time, temperature and substrate feed rate in fed-batch operation to name only a few. Therefore, a high number of systematic experiments are necessary to elucidate the best conditions for heterologous expression of each new protein of interest. RESULTS: To increase the throughput in bioprocess development, we used a microtiter plate based cultivation system (Biolector) which was fully integrated into a liquid-handling platform enclosed in laminar airflow housing. This automated cultivation platform was used for optimization of the secretory production of a cutinase from Fusarium solani pisi with Corynebacterium glutamicum. The online monitoring of biomass, dissolved oxygen and pH in each of the microtiter plate wells enables to trigger sampling or dosing events with the pipetting robot used for a reliable selection of best performing cutinase producers. In addition to this, further automated methods like media optimization and induction profiling were developed and validated. All biological and bioprocess parameters were exclusively optimized at microtiter plate scale and showed perfect scalable results to 1 L and 20 L stirred tank bioreactor scale. CONCLUSIONS: The optimization of heterologous protein expression in microbial systems currently requires extensive testing of biological and bioprocess engineering parameters. This can be efficiently boosted by using a microtiter plate cultivation setup embedded into a liquid-handling system, providing more throughput by parallelization and automation. Due to improved statistics by replicate cultivations, automated downstream analysis, and scalable process information, this setup has superior performance compared to standard microtiter plate cultivation.


Assuntos
Reatores Biológicos/microbiologia , Automação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Corynebacterium glutamicum/crescimento & desenvolvimento , Corynebacterium glutamicum/metabolismo , Fusarium/enzimologia , Concentração de Íons de Hidrogênio , Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...