Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(2): 228-251, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38050738

RESUMO

Alcohol dehydrogenases are a well-known group of enzymes in the class of oxidoreductases that use electron transfer cofactors such as NAD(P)+/NAD(P)H for oxidation or reduction reactions of alcohols or carbonyl compounds respectively. These enzymes are utilized mainly as purified enzymes and offer some advantages in terms of green chemistry. They are environmentally friendly and a sustainable alternative to traditional chemical synthesis of bulk and fine chemicals. Industry has implemented several whole-cell biocatalytic processes to synthesize pharmaceutically active ingredients by exploring the high selectivity of enzymes. Unlike the whole cell system where cofactor regeneration is well conserved within the cellular environment, purified enzymes require additional cofactors or a cofactor recycling system in the reaction, even though cleaner reactions can be carried out with fewer downstream work-up problems. The challenge of producing purified enzymes in large quantities has been solved in large part by the use of recombinant enzymes. Most importantly, recombinant enzymes find applications in many cascade biotransformations to produce several important chiral precursors. Inevitably, several dehydrogenases were engineered as mere recombinant enzymes could not meet the industrial requirements for substrate and stereoselectivity. In recent years, a significant number of engineered alcohol dehydrogenases have been employed in asymmetric synthesis in industry. In a parallel development, several enzymatic and non-enzymatic methods have been established for regenerating expensive cofactors (NAD+/NADP+) to make the overall enzymatic process more efficient and economically viable. In this review article, recent developments and applications of microbial alcohol dehydrogenases are summarized by emphasizing notable examples.


Assuntos
Álcool Desidrogenase , NAD , Álcool Desidrogenase/metabolismo , Oxirredução , Álcoois/química , Biocatálise
2.
Sci Rep ; 6: 34344, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739423

RESUMO

Confocal microscopic studies with the resting cells of yeast, Candida parapsilosis ATCC 7330, a reportedly versatile biocatalyst for redox enzyme mediated preparation of optically pure secondary alcohols in high optical purities [enantiomeric excess (ee) up to >99%] and yields, revealed that the yeast cells had large vacuoles under the experimental conditions studied where the redox reaction takes place. A novel fluorescence method was developed using 1-(6-methoxynaphthalen-2-yl)ethanol to track the site of biotransformation within the cells. This alcohol, itself non-fluorescent, gets oxidized to produce a fluorescent ketone, 1-(6-methoxynaphthalen-2-yl)ethanone. Kinetic studies showed that the reaction occurs spontaneously and the products get released out of the cells in less time [5 mins]. The biotransformation was validated using HPLC.


Assuntos
Candida parapsilosis/metabolismo , Catecóis/farmacologia , Catecóis/farmacocinética , Candida parapsilosis/citologia , Microscopia Confocal/métodos , Oxirredução/efeitos dos fármacos
3.
Bioorg Chem ; 68: 187-213, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27544073

RESUMO

This review highlights the importance of the biocatalyst, Candida parapsilosis for oxidation and reduction reactions of organic compounds and establishes its versatility to generate a variety of chiral synthons. Appropriately designed reactions using C. parapsilosis effect efficient catalysis of organic transformations such as deracemization, enantioselective reduction of prochiral ketones, imines, and kinetic resolution of racemic alcohols via selective oxidation. This review includes the details of these biotransformations, catalyzed by whole cells (wild type and recombinant strains), purified enzymes (oxidoreductases) and immobilized whole cells of C. parapsilosis. The review presents a bioorganic perspective as it discusses the chemo, regio and stereoselectivity of the biocatalyst along with the structure of the substrates and optical purity of the products. Fermentation scale biocatalysis using whole cells of C. parapsilosis for several biotransformations to synthesize important chiral synthons/industrial chemicals is included. A comparison of C. parapsilosis with other whole cell biocatalysts for biocatalytic deracemization and asymmetric reduction of carbonyl and imine groups in the synthesis of a variety of enantiopure products is presented which will provide a basis for the choice of a biocatalyst for a desired organic transformation. Thus, a wholesome perspective on the present status of C. parapsilosis mediated organic transformations and design of new reactions which can be considered for large scale operations is provided. Taken together, C. parapsilosis can now be considered a 'reagent' for the organic transformations discussed here.


Assuntos
Oxirredutases do Álcool/metabolismo , Candida/metabolismo , Compostos Orgânicos/metabolismo , Oxirredutases/metabolismo , Biocatálise , Candida/citologia , Candida/enzimologia , Estrutura Molecular , Compostos Orgânicos/química , Oxirredução
4.
J Ind Microbiol Biotechnol ; 42(2): 173-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25475754

RESUMO

Optically pure aliphatic ß-hydroxy esters were prepared from their racemates by deracemisation using the biocatalyst Candida parapsilosis ATCC 7330. High optical purity (up to >99 %) and good yields (up to 71 %) of the product secondary alcohols were obtained. This study highlights the importance of optimization of reaction conditions using ethyl-3-hydroxybutanoate as the model substrate to improve the enantioselectivity (enantiomeric excess from 9 to 98 %). The present study emphasises the broad substrate scope of the biocatalyst towards deracemisation. This is the first report of Candida parapsilosis ATCC 7330-mediated deracemisation of various alkyl-3-hydroxybutanoates to produce either the (R)-enantiomers (methyl, ethyl, propyl, butyl, t-butyl, allyl-3-hydroxybutanoates) or (S)-enantiomers (pentyl, iso-amyl and iso-propyl-3-hydroxybutanoates).


Assuntos
Biocatálise , Butiratos/química , Candida/metabolismo , Hidroxibutiratos/química , Ésteres , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Estereoisomerismo , Especificidade por Substrato
5.
Appl Biochem Biotechnol ; 171(3): 756-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23892621

RESUMO

Asymmetric reduction of alkyl-3-oxobutanoates mediated by Candida parapsilosis ATCC 7330 resulted in optically pure alkyl-3-hydroxybutanoates in good yields (up to 72%) and excellent enantiomeric excess (up to >99 %). A detailed and systematic optimisation study was necessary and was carried out to avoid the undesired transesterification reaction during the course of asymmetric reduction. Under optimised conditions, the (S)-alkyl hydroxyesters were produced predominantly except for the methyl ester which formed the (R)-enantiomer. To the best of our knowledge, the biocatalytic asymmetric reduction of isoamyl-3-oxobutanoate to (S)-isoamyl-3-hydroxybutanoate is reported here for the first time.


Assuntos
Butiratos/metabolismo , Candida/metabolismo , Hidroxibutiratos/metabolismo , Biocatálise , Oxirredução , Solventes/farmacologia , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...