Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 556, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927609

RESUMO

BACKGROUND: There is a need to investigate mechanisms of phenotypic plasticity in marine invertebrates as negative effects of climate change, like ocean acidification, are experienced by coastal ecosystems. Environmentally-induced changes to the methylome may regulate gene expression, but methylome responses can be species- and tissue-specific. Tissue-specificity has implications for gonad tissue, as gonad-specific methylation patterns may be inherited by offspring. We used the Pacific oyster (Crassostrea gigas) - a model for understanding pH impacts on bivalve molecular physiology due to its genomic resources and importance in global aquaculture- to assess how low pH could impact the gonad methylome. Oysters were exposed to either low pH (7.31 ± 0.02) or ambient pH (7.82 ± 0.02) conditions for 7 weeks. Whole genome bisulfite sequencing was used to identify methylated regions in female oyster gonad samples. C- > T single nucleotide polymorphisms were identified and removed to ensure accurate methylation characterization. RESULTS: Analysis of gonad methylomes revealed a total of 1284 differentially methylated loci (DML) found primarily in genes, with several genes containing multiple DML. Gene ontologies for genes containing DML were involved in development and stress response, suggesting methylation may promote gonad growth homeostasis in low pH conditions. Additionally, several of these genes were associated with cytoskeletal structure regulation, metabolism, and protein ubiquitination - commonly-observed responses to ocean acidification. Comparison of these DML with other Crassostrea spp. exposed to ocean acidification demonstrates that similar pathways, but not identical genes, are impacted by methylation. CONCLUSIONS: Our work suggests DNA methylation may have a regulatory role in gonad and larval development, which would shape adult and offspring responses to low pH stress. Combined with existing molluscan methylome research, our work further supports the need for tissue- and species-specific studies to understand the potential regulatory role of DNA methylation.


Assuntos
Crassostrea , Metilação de DNA , Animais , Crassostrea/metabolismo , DNA/metabolismo , Ecossistema , Feminino , Homeostase , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
2.
Mol Ecol Resour ; 22(4): 1247-1261, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34709728

RESUMO

There is a growing focus on the role of DNA methylation in the ability of marine invertebrates to rapidly respond to changing environmental factors and anthropogenic impacts. However, genome-wide DNA methylation studies in nonmodel organisms are currently hampered by a limited understanding of methodological biases. Here, we compare three methods for quantifying DNA methylation at single base-pair resolution-whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and methyl-CpG binding domain bisulfite sequencing (MBDBS)-using multiple individuals from two reef-building coral species with contrasting environmental sensitivity. All methods reveal substantially greater methylation in Montipora capitata (11.4%) than the more sensitive Pocillopora acuta (2.9%). The majority of CpG methylation in both species occurs in gene bodies and flanking regions. In both species, MBDBS has the greatest capacity for detecting CpGs in coding regions at our sequencing depth, but MBDBS may be influenced by intrasample methylation heterogeneity. RRBS yields robust information for specific loci albeit without enrichment of any particular genome feature and with significantly reduced genome coverage. Relative genome size strongly influences the number and location of CpGs detected by each method when sequencing depth is limited, illuminating nuances in cross-species comparisons. As genome-wide methylation differences, supported by data across bisulfite sequencing methods, may contribute to environmental sensitivity phenotypes in critical marine invertebrate taxa, these data provide a genomic resource for investigating the functional role of DNA methylation in environmental tolerance.


Assuntos
Metilação de DNA , Epigenoma , Animais , Viés , Ilhas de CpG/genética , Sequenciamento de Nucleotídeos em Larga Escala , Invertebrados/genética , Análise de Sequência de DNA/métodos
3.
Ecol Appl ; 30(3): e02060, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31863716

RESUMO

Predicting how populations will respond to ocean change across generations is critical to effective conservation of marine species. One emerging factor is the influence of parental exposures on offspring phenotype, known as intergenerational carryover effects. Parental exposure may deliver beneficial or detrimental characteristics to offspring that can influence larval recruitment patterns, thus shaping how populations and community structure respond to ocean change. Impacts of adult exposure to elevated winter temperature and pCO2 on reproduction and offspring viability were examined in the Olympia oyster (Ostrea lurida) using three populations of adult, hatchery-reared O. lurida, plus an additional cohort spawned from one of the populations. Oysters were sequentially exposed to elevated temperature (+4°C, at 10°C), followed by elevated pCO2 (+2,204 µatm, at 3,045 µatm) during winter months. Male gametes were more developed after elevated temperature exposure and less developed after high pCO2 exposure, but there was no impact on female gametes or sex ratios. Oysters previously exposed to elevated winter temperature released larvae earlier, regardless of pCO2 exposure. Those exposed to elevated winter temperature as a sole treatment released more larvae on a daily basis but, when also exposed to high pCO2 , there was no effect. These combined results indicate that elevated winter temperature accelerates O. lurida spermatogenesis, resulting in earlier larval release and increased production, with elevated pCO2 exposure negating effects of elevated temperature. Altered recruitment patterns may therefore follow warmer winters due to precocious spawning, but these effects may be masked by coincidental high pCO2 . Offspring were reared in common conditions for 1 yr, then deployed for 3 months in four estuarine bays with distinct environmental conditions. Offspring of parents exposed to elevated pCO2 had higher survival rates in two of the four bays. This carryover effect demonstrates that parental conditions can have substantial ecologically relevant impacts that should be considered when predicting impacts of environmental change. Furthermore, Olympia oysters may be more resilient in certain environments when progenitors are pre-conditioned in stressful conditions. Combined with other recent studies, our work suggests that the Olympia may be more equipped than other oysters for the challenge of a changing ocean.


Assuntos
Ostreidae , Água do Mar , Animais , Baías , Dióxido de Carbono/efeitos adversos , Feminino , Ligas de Ouro , Concentração de Íons de Hidrogênio , Masculino , Temperatura
4.
Artigo em Inglês | MEDLINE | ID: mdl-30818101

RESUMO

Pacific geoduck aquaculture is a growing industry, however, little is known about how geoduck respond to varying environmental conditions, or how the industry will fare under projected climate conditions. To understand how geoduck production may be impacted by low pH associated with ocean acidification, multi-faceted environmental heterogeneity needs to be included to understand species and community responses. In this study, eelgrass habitats and environmental heterogeneity across four estuarine bays were leveraged to examine low pH effects on geoduck under different natural regimes, using targeted proteomics to assess physiology. Juvenile geoduck were deployed in eelgrass and adjacent unvegetated habitats for 30 days while pH, temperature, dissolved oxygen, and salinity were monitored. Across the four bays, pH was lower in unvegetated habitats compared to eelgrass habitats. However this did not impact geoduck growth, survival, or proteomic abundance patterns in gill tissue. Temperature and dissolved oxygen differences across all locations corresponded to differences in growth and targeted protein abundance patterns. Specifically, three protein abundance levels (trifunctional-enzyme ß-subunit, puromycin-sensitive aminopeptidase, and heat shock protein 90-α) and shell growth positively correlated with dissolved oxygen variability and inversely correlated with mean temperature. These results demonstrate that geoduck may be resilient to low pH in a natural setting, but other abiotic factors (i.e. temperature, dissolved oxygen variability) may have a greater influence on geoduck physiology. In addition this study contributes to the understanding of how eelgrass patches influences water chemistry.


Assuntos
Bivalves/fisiologia , Aclimatação , Animais , Bivalves/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Proteínas/análise , Salinidade , Água do Mar/química
5.
Exp Gerontol ; 119: 146-156, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30738921

RESUMO

Because stress tolerance and longevity are mechanistically and phenotypically linked, the sex with higher acute stress tolerance might be expected to also live longer. On the other hand, the association between stress tolerance and lifespan may be complicated by tradeoffs between acute tolerance and long-term survival. Here we use the copepod Tigriopus californicus to test for sex differences in stress resistance, proteolytic activity and longevity. Unlike many model organisms, this species does not have sex chromosomes. However, substantial sex differences were still observed. Females were found to have superior tolerance to a range of acute stressors (high temperature, high salinity, low salinity, copper and bisphenol A (BPA)) across a variety of treatments including different populations, pure vs. hybrid crosses, and different shading environments. Upregulation of proteolytic capacity - one molecular mechanism for responding to acute stress - was also found to be sexually dimorphic. In the combined stress treatment of chronic copper exposure followed by acute heat exposure, proteolytic capacity was suppressed for males. Females, however, maintained a robust proteolytic stress response. While females consistently showed greater tolerance to short-term stress, lifespan was largely equivalent between the two sexes under both benign conditions and mild thermal stress. Our findings indicate that short-term stress tolerance does not predict long-term survival under relatively mild conditions.


Assuntos
Copépodes/fisiologia , Animais , Compostos Benzidrílicos/toxicidade , Copépodes/efeitos dos fármacos , Copépodes/genética , Cobre/toxicidade , Feminino , Hibridização Genética , Longevidade/fisiologia , Masculino , Fenóis/toxicidade , Proteólise , Tolerância ao Sal , Caracteres Sexuais , Razão de Masculinidade , Estresse Fisiológico , Termotolerância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...