Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 61(12): 11, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049059

RESUMO

Purpose: Although zebrafish rods begin to develop as early as 2 days postfertilization (dpf), they are not deemed anatomically mature and functional until 15 to 21 dpf. A recent study detected a small electroretinogram (ERG) from rods in a cone mutant called no optokinetic response f (nof) at 5 dpf, suggesting that young rods are functional. Whether they can mediate behavioral responses in larvae is unknown. Methods: We first confirmed rod function by measuring nof ERGs under photopic and scotopic illumination at 6 dpf. We evaluated the role of rods in visual behaviors using two different assays: the visual-motor response (VMR) and optokinetic response (OKR). We measured responses from wild-type (WT) larvae and nof mutants under photopic and scotopic illuminations at 6 dpf. Results: Nof mutants lacked a photopic ERG. However, after prolonged dark adaptation, they displayed scotopic ERGs. Compared with WT larvae, the nof mutants displayed reduced VMRs. The VMR difference during light onset gradually diminished with decreased illumination and became nearly identical at lower light intensities. Additionally, light-adapted nof mutants did not display an OKR, whereas dark-adapted nof mutants displayed scotopic OKRs. Conclusions: Because the nof mutants lacked a photopic ERG but displayed scotopic ERGs after dark adaptation, the mutants clearly had functional rods. WT larvae and the nof mutants displayed comparable scotopic light-On VMRs and scotopic OKRs after dark adaptation, suggesting that these responses were driven primarily by rods. Together, these observations indicate that rods contribute to zebrafish visual behaviors as early as 6 dpf.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Visão Ocular/fisiologia , Peixe-Zebra/fisiologia , Animais , Visão de Cores/fisiologia , Eletrorretinografia , Técnicas de Genotipagem , Larva , Visão Noturna/fisiologia , Nistagmo Optocinético/fisiologia
2.
Adv Biosyst ; 4(10): e2000080, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32875741

RESUMO

The evolution of tissue on a chip systems holds promise for mimicking the response of biological functionality of physiological systems. One important direction for tissue on a chip approaches are neuron-based systems that could mimic neurological responses and lessen the need for in vivo experimentation. For neural research, more attention has been devoted recently to understanding mechanics due to issues in areas such as traumatic brain injury (TBI) and pain, among others. To begin to address these areas, a 3D Nerve Integrated Tissue on a Chip (NITC) approach combined with a Mechanical Excitation Testbed (MET) System is developed to impose external mechanical stimulation toward more realistic physiological environments. PC12 cells differentiated with nerve growth factor, which were cultured in a controlled 3D scaffolds, are used. The cells are labeled in a 3D NITC system with Fluo-4-AM to examine their calcium response under mechanical stimulation synchronized with image capture. Understanding the neural responses to mechanical stimulation beyond 2D systems is very important for neurological studies and future personalized strategies. This work will have implications in a diversity of areas including tissue-on-a-chip systems, biomaterials, and neuromechanics.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip , Mecanotransdução Celular/fisiologia , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Desenho de Equipamento , Neurônios/citologia , Células PC12 , Ratos , Alicerces Teciduais
3.
PLoS One ; 14(2): e0212234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30768618

RESUMO

Many contemporary neuroscience experiments utilize high-throughput approaches to simultaneously collect behavioural data from many animals. The resulting data are often complex in structure and are subjected to systematic biases, which require new approaches for analysis and normalization. This study addressed the normalization need by establishing an approach based on linear-regression modeling. The model was established using a dataset of visual motor response (VMR) obtained from several strains of wild-type (WT) zebrafish collected at multiple stages of development. The VMR is a locomotor response triggered by drastic light change, and is commonly measured repeatedly from multiple larvae arrayed in 96-well plates. This assay is subjected to several systematic variations. For example, the light emitted by the machine varies slightly from well to well. In addition to the light-intensity variation, biological replication also created batch-batch variation. These systematic variations may result in differences in the VMR and must be normalized. Our normalization approach explicitly modeled the effect of these systematic variations on VMR. It also normalized the activity profiles of different conditions to a common baseline. Our approach is versatile, as it can incorporate different normalization needs as separate factors. The versatility was demonstrated by an integrated normalization of three factors: light-intensity variation, batch-batch variation and baseline. After normalization, new biological insights were revealed from the data. For example, we found larvae of TL strain at 6 days post-fertilization (dpf) responded to light onset much stronger than the 9-dpf larvae, whereas previous analysis without normalization shows that their responses were relatively comparable. By removing systematic variations, our model-based normalization can facilitate downstream statistical comparisons and aid detecting true biological differences in high-throughput studies of neurobehaviour.


Assuntos
Comportamento Animal/fisiologia , Bases de Dados Factuais , Atividade Motora/fisiologia , Peixe-Zebra/fisiologia , Animais
4.
Int J Mol Sci ; 18(6)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28574477

RESUMO

Zebrafish are a popular vertebrate model in drug discovery. They produce a large number of small and rapidly-developing embryos. These embryos display rich visual-behaviors that can be used to screen drugs for treating retinal degeneration (RD). RD comprises blinding diseases such as Retinitis Pigmentosa, which affects 1 in 4000 people. This disease has no definitive cure, emphasizing an urgency to identify new drugs. In this review, we will discuss advantages, challenges, and research developments in using zebrafish behaviors to screen drugs in vivo. We will specifically discuss a visual-motor response that can potentially expedite discovery of new RD drugs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Retina/efeitos dos fármacos , Degeneração Retiniana/tratamento farmacológico , Peixe-Zebra/fisiologia , Animais , Modelos Animais de Doenças , Retina/patologia , Degeneração Retiniana/patologia , Visão Ocular/efeitos dos fármacos
5.
Sci Rep ; 7(1): 2937, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592855

RESUMO

Upon a drastic change in environmental illumination, zebrafish larvae display a rapid locomotor response. This response can be simultaneously tracked from larvae arranged in multi-well plates. The resulting data have provided new insights into neuro-behaviour. The features of these data, however, present a challenge to traditional statistical tests. For example, many larvae display little or no movement. Thus, the larval responses have many zero values and are imbalanced. These responses are also measured repeatedly from the same well, which results in correlated observations. These analytical issues were addressed in this study by the generalized linear mixed model (GLMM). This approach deals with binary responses and characterizes the correlation of observations in the same group. It was used to analyze a previously reported dataset. Before applying the GLMM, the activity values were transformed to binary responses (movement vs. no movement) to reduce data imbalance. Moreover, the GLMM estimated the variations among the effects of different well locations, which would eliminate the location effects when two biological groups or conditions were compared. By addressing the data-imbalance and location-correlation issues, the GLMM effectively quantified true biological effects on zebrafish locomotor response.


Assuntos
Comportamento Animal , Modelos Lineares , Locomoção , Atividade Motora , Peixe-Zebra/fisiologia , Algoritmos , Análise de Variância , Animais , Larva , Estágios do Ciclo de Vida , Modelos Estatísticos , Especificidade da Espécie , Fatores de Tempo
7.
PLoS One ; 11(3): e0149663, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930483

RESUMO

Retinal degeneration is often progressive. This feature has provided a therapeutic window for intervention that may extend functional vision in patients. Even though this approach is feasible, few promising drug candidates are available. The scarcity of new drugs has motivated research to discover novel compounds through different sources. One such example is Schisandrin B (SchB), an active component isolated from the five-flavor fruit (Fructus Schisandrae) that is postulated in traditional Chinese medicines to exert prophylactic visual benefit. This SchB benefit was investigated in this study in pde6cw59, a zebrafish retinal-degeneration model. In this model, the pde6c gene (phosphodiesterase 6C, cGMP-specific, cone, alpha prime) carried a mutation which caused cone degeneration. This altered the local environment and caused the bystander rods to degenerate too. To test SchB on the pde6cw59 mutants, a treatment concentration was first determined that would not cause morphological defects, and would initiate known physiological response. Then, the mutants were treated with the optimized SchB concentration before the appearance of retinal degeneration at 3 days postfertilization (dpf). The light sensation of animals was evaluated at 6 dpf by the visual motor response (VMR), a visual startle that could be initiated by drastic light onset and offset. The results show that the VMR of pde6cw59 mutants towards light onset was enhanced by the SchB treatment, and that the initial phase of the enhancement was primarily mediated through the mutants' eyes. Further immunostaining analysis indicates that the treatment specifically reduced the size of the abnormally large rods. These observations implicate an interesting hypothesis: that the morphologically-improved rods drive the observed VMR enhancement. Together, these investigations have identified a possible visual benefit of SchB on retinal degeneration, a benefit that can potentially be further developed to extend functional vision in patients.


Assuntos
Lignanas/uso terapêutico , Compostos Policíclicos/uso terapêutico , Degeneração Retiniana/tratamento farmacológico , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Peixe-Zebra , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Ciclo-Octanos/química , Ciclo-Octanos/uso terapêutico , Modelos Animais de Doenças , Larva/efeitos dos fármacos , Lignanas/química , Mutação , Compostos Policíclicos/química , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Schisandraceae/química , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
8.
Comput Biol Med ; 69: 1-9, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26688204

RESUMO

Zebrafish larvae display a rapid and characteristic swimming behaviour after abrupt light onset or offset. This light-induced locomotor response (LLR) has been widely used for behavioural research and drug screening. However, the locomotor responses have long been shown to be different between different wild-type (WT) strains. Thus, it is critical to define the differences in the WT LLR to facilitate accurate interpretation of behavioural data. In this investigation, we used support vector machine (SVM) models to classify LLR data collected from three WT strains: AB, TL and TLAB (a hybrid of AB and TL), during early embryogenesis, from 3 to 9 days post-fertilisation (dpf). We analysed both the complete dataset and a subset of the data during the first 30after light change. This initial period of activity is substantially driven by vision, and is also known as the visual motor response (VMR). The analyses have resulted in three major conclusions: First, the LLR is different between the three WT strains, and at different developmental stages. Second, the distinguishable information in the VMR is comparable to, if not better than, the full dataset for classification purposes. Third, the distinguishable information of WT strains in the light-onset response differs from that in the light-offset response. While the classification accuracies were higher for the light-offset than light-onset response when using the complete LLR dataset, a reverse trend was observed when using a shorter VMR dataset. Together, our results indicate that one should use caution when extrapolating interpretations of LLR/VMR obtained from one WT strain to another.


Assuntos
Comportamento Animal , Luz , Locomoção/fisiologia , Máquina de Vetores de Suporte , Peixe-Zebra , Animais , Comportamento Animal/classificação , Comportamento Animal/fisiologia , Especificidade da Espécie , Peixe-Zebra/classificação , Peixe-Zebra/fisiologia
9.
PLoS One ; 10(10): e0139521, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26437184

RESUMO

Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.


Assuntos
Modelos Biológicos , Natação , Peixe-Zebra/fisiologia , Análise de Variância , Animais , Comportamento Animal/efeitos da radiação , Feminino , Luz , Masculino , Estimulação Luminosa , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
10.
J Neurochem ; 130(4): 526-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24702317

RESUMO

NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NADPH oxidase 2 (NOX2)-type complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F-actin content, retrograde F-actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91(phox) localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40(phox) . p40(phox) itself exhibited colocalization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91(phox) and p40(phox) with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in colocalization of p40(phox) with NOX2/gp91(phox) at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth. We have previously shown that reactive oxygen species (ROS) are critical for actin organization and dynamics in neuronal growth cones as well as neurite outgrowth. Here, we report that the cytosolic subunit p40(phox) of the NOX2-type NADPH oxidase complex is partially associated with F-actin in neuronal growth cones, while ROS produced by this complex regulates F-actin dynamics and neurite growth. These findings provide evidence for a bidirectional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Cones de Crescimento/metabolismo , NADPH Oxidases/metabolismo , Neurônios/metabolismo , Animais , Aplysia/metabolismo , Benzoxazóis/farmacologia , Citocalasinas/metabolismo , Citoesqueleto/efeitos dos fármacos , Cones de Crescimento/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Imunoprecipitação , Microscopia de Fluorescência , NADPH Oxidases/antagonistas & inibidores , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/efeitos dos fármacos , Triterpenos Pentacíclicos , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triazóis/farmacologia , Triterpenos/farmacologia
11.
J Biol Chem ; 287(52): 43810-24, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23105112

RESUMO

Cleavage of transmembrane receptors by γ-secretase is the final step in the process of regulated intramembrane proteolysis (RIP) and has a significant impact on receptor function. Although relatively little is known about the molecular mechanism of γ-secretase enzymatic activity, it is becoming clear that substrate dimerization and/or the α-helical structure of the substrate can regulate the site and rate of γ-secretase activity. Here we show that the transmembrane domain of the pan-neurotrophin receptor p75(NTR), best known for regulating neuronal death, is sufficient for its homodimerization. Although the p75(NTR) ligands NGF and pro-NGF do not induce homerdimerization or RIP, homodimers of p75(NTR) are γ-secretase substrates. However, dimerization is not a requirement for p75(NTR) cleavage, suggesting that γ-secretase has the ability to recognize and cleave each receptor molecule independently. The transmembrane cysteine 257, which mediates covalent p75(NTR) interactions, is not crucial for homodimerization, but this residue is required for normal rates of γ-secretase cleavage. Similarly, mutation of the residues alanine 262 and glycine 266 of an AXXXG dimerization motif flanking the γ-secretase cleavage site within the p75(NTR) transmembrane domain alters the orientation of the domain and inhibits γ-secretase cleavage of p75(NTR). Nonetheless, heteromer interactions of p75(NTR) with TrkA increase full-length p75(NTR) homodimerization, which in turn potentiates the rate of γ-cleavage following TrkA activation independently of rates of α-cleavage. These results provide support for the idea that the helical structure of the p75(NTR) transmembrane domain, which may be affected by co-receptor interactions, is a key element in γ-secretase-catalyzed cleavage.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Multimerização Proteica/fisiologia , Proteólise , Receptores de Fatores de Crescimento/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Motivos de Aminoácidos , Secretases da Proteína Precursora do Amiloide/genética , Animais , Morte Celular/fisiologia , Cisteína , Ativação Enzimática , Células HEK293 , Humanos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Células PC12 , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores de Fatores de Crescimento/genética , Receptores de Fator de Crescimento Neural/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...