Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31826, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882311

RESUMO

As an ecological alternative to the conventional refrigeration technology, magnetocaloric refrigeration is still facing scientific and technological challenges hindering their application. Magnetocaloric devices rely on the magnetocaloric effect, where temperature variations result from magnetic field changes. The correct implementation of the magnetocaloric effect in numerical models is crucial before prototyping the related solutions. Here, we present a comparison between the three most used numerical methods to simulate the magnetocaloric effect: continuous temperature change, discrete temperature change step and heat source obtained from adiabatic temperature. By varying the time and space steps, it was observed that the continuous temperature change method is the most appropriate for small time steps, but has the largest computational cost. The discrete method can only be applied to small time steps, but is the fastest method. Finally, the adiabatic temperature change power source method can be applied in the entire range and is the one that presents the best results for larger time steps.

2.
ACS Biomater Sci Eng ; 9(6): 3712-3722, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37256830

RESUMO

Triboelectric nanogenerators (TENGs) are associated with several drawbacks that limit their application in the biomedical field, including toxicity, thrombogenicity, and poor performance in the presence of fluids. By proposing the use of a hemo/biocompatible hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), this study bypasses these barriers. In contact-separation mode, using polytetrafluoroethylene (PTFE) as a reference, pHEMA generates an output of 100.0 V, under an open circuit, 4.7 µA, and 0.68 W/m2 for an internal resistance of 10 MΩ. Our findings unveil that graphene oxide (GO) can be used to tune pHEMA's triboelectric properties in a concentration-dependent manner. At the lowest measured concentration (0.2% GO), the generated outputs increase to 194.5 V, 5.3 µA, and 1.28 W/m2 due to the observed increase in pHEMA's surface roughness, which expands the contact area. Triboelectric performance starts to decrease as GO concentration increases, plateauing at 11% volumetric, where the output is 51 V, 1.76 µA, and 0.17 W/m2 less than pHEMA's. Increases in internal resistance, from 14 ΩM to greater than 470 ΩM, ζ-potential, from -7.3 to -0.4 mV, and open-circuit characteristic charge decay periods, from 90 to 120 ms, are all observed in conjunction with this phenomenon, which points to GO function as an electron trapping site in pHEMA's matrix. All of the composites can charge a 10 µF capacitor in 200 s, producing a voltage between 0.25 and 3.5 V and allowing the operation of at least 20 LEDs. The triboelectric output was largely steady throughout the 3.33 h durability test. Voltage decreases by 38% due to contact-separation frequency, whereas current increases by 77%. In terms of pressure, it appears to have little effect on voltage but boosts current output by 42%. Finally, pHEMA and pHEMA/GO extracts were cytocompatible toward fibroblasts. According to these results, pHEMA has a significant potential to function as a biomaterial to create bio/hemocompatible TENGs and GO to precisely control its triboelectric outputs.


Assuntos
Eletrônica Médica , Hidrogéis , Elétrons , Poli-Hidroxietil Metacrilato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA