Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36851755

RESUMO

Papaya sticky disease is caused by the association of a fusagra-like and an umbra-like virus, named papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), respectively. Both viral genomes are encapsidated in particles formed by the PMeV ORF1 product, which has the potential to encode a protein with 1563 amino acids (aa). However, the structural components of the viral capsid are unknown. To characterize the structural proteins of PMeV and PMeV2, virions were purified from Carica papaya latex. SDS-PAGE analysis of purified virus revealed two major proteins of ~40 kDa and ~55 kDa. Amino-terminal sequencing of the ~55 kDa protein and LC-MS/MS of purified virions indicated that this protein starts at aa 263 of the deduced ORF1 product as a result of either degradation or proteolytic processing. A yeast two-hybrid assay was used to identify Arabidopsis proteins interacting with two PMeV ORF1 product fragments (aa 321-670 and 961-1200). The 50S ribosomal protein L17 (AtRPL17) was identified as potentially associated with modulated translation-related proteins. In plant cells, AtRPL17 co-localized and interacted with the PMeV ORF1 fragments. These findings support the hypothesis that the interaction between PMeV/PMeV2 structural proteins and RPL17 is important for virus-host interactions.


Assuntos
Proteínas do Capsídeo , Carica , Aminoácidos , Capsídeo , Proteínas do Capsídeo/genética , Cromatografia Líquida , Látex , Espectrometria de Massas em Tandem , Vírus de RNA/genética
2.
Virusdisease ; 32(3): 526-534, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34631977

RESUMO

Brazilian traditional medicine has explored the antiviral properties of many plant extracts, including those from the Brazilian pepper tree, Schinus terebinthifolius. In the present study, we investigated the chemical composition and anti-mayaro virus (MAYV) activity of S. terebinthifolius fruit. Extensive virucidal activity (more than 95%) was detected for the ethyl acetate extract and the isolated biflavonoids. From the ethyl acetate extract of Schinus terebinthifolius fruits, two bioflavonoids were isolated ((2S, 2″S)-2,3,2″,3″-tetrahydroamentoflavone and agathisflavone), which showed strong virucidal activity against Mayaro virus. Furthermore, several other compounds like terpenes and phenolics were identified by hyphenated techniques (GC-MS, LC-MS and HPLC-UV), as well as by mass spectrometry. Immunofluorescence assay confirmed antiviral activity and transmission electron microscopy revealed damage in viral particles treated with biflavonoids. The data suggest the direct action of the extract and the biflavonoids on the virus particles. The biflavonoids tetrahydroamentoflavone and agathisflavone had strong virucidal activity and reduced MAYV infection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13337-021-00698-z.

3.
Parasit Vectors ; 14(1): 443, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479605

RESUMO

BACKGROUND: The arthropod-borne Mayaro virus (MAYV) causes "Mayaro fever," a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. There are currently no licensed drugs against most mosquito-transmitted viruses. Punica granatum (pomegranate) fruits cultivated in Brazil have been subjected to phytochemical investigation for the identification and isolation of antiviral compounds. In the present study, we explored the antiviral activity of pomegranate extracts in Vero cells infected with Mayaro virus. METHODS: The ethanol extract and punicalagin of pomegranate were extracted solely from the shell and purified by chromatographic fractionation, and were chemically identified using spectroscopic techniques. The cytotoxicity of the purified compounds was measured by the dye uptake assay, while their antiviral activity was evaluated by a virus yield inhibition assay. RESULTS: Pomegranate ethanol extract (CC50 = 588.9, IC50 = 12.3) and a fraction containing punicalagin as major compound (CC50 = 441.5, IC50 = 28.2) were shown to have antiviral activity (SI 49 and 16, respectively) against Mayaro virus, an alphavirus. Immunofluorescence analysis showed the virucidal effect of pomegranate extract, and transmission electron microscopy (TEM) revealed damage in viral particles treated with this extract. CONCLUSIONS: The P. granatum extract is a promising source of antiviral compounds against the alphavirus MAYV and represents an excellent candidate for future studies with other enveloped RNA viruses.


Assuntos
Alphavirus/efeitos dos fármacos , Antivirais/farmacologia , Arbovírus/efeitos dos fármacos , Culicidae/virologia , Compostos Fitoquímicos/farmacologia , Punica granatum/química , Replicação Viral/efeitos dos fármacos , Alphavirus/classificação , Animais , Chlorocebus aethiops , Taninos Hidrolisáveis/farmacologia , Células Vero
4.
Micron ; 147: 103091, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34090132

RESUMO

High hydrostatic pressure (HHP) stress generates cellular responses similar to those to other stresses that yeasts endure in fermentation tanks. Structural and spatial compaction of molecules, as well as weakening and stretching of plasma membranes and cell walls, are often observed and have a significant influence on the fermentative process. Atomic force microscopy (AFM) yields accurate data on the morphological characteristics of yeast cell walls, providing important insights for the development of more productive yeast strains. Saccharomyces cerevisiae cell wall assessment using AFM in the intermittent contact reading mode using a silicon cantilever, before and after application of a pressure of 100 MPa for 30 min, demonstrated that mother and daughter cells have different responses. Daughter cells were more sensitive to the effects of HHP, presenting lower average Ra (arithmetic roughness), Rz (ten-point average roughness), and Rq (root-mean-square roughness) after exposure to high pressure. Better adaptation to stress in mother cells leads to higher cell wall resistance and, therefore, to better protection.


Assuntos
Adaptação Fisiológica , Saccharomyces cerevisiae , Membrana Celular , Parede Celular , Pressão Hidrostática
5.
J Cosmet Sci ; 72(2): 155-162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35361321

RESUMO

The outer pericarps of Lecythis pisonis Camb. are by-products with a high content of antioxidant substances. The goal of the present study was to analyze the incorporation of L. pisonis pericarp extract in an all-natural formulation. Physical-chemical and organoleptic characteristics and Challenge tests were evaluated before and after the stability test of the cosmetic formulation. The instability of the formulation increased with the increase of the concentration of the extract. The physical-chemical and organoleptic parameters did not present alterations after the stability test. The extract of the outer pericarp of L. pisonis seems to be compatible with the cream formulation. However, the concentration should be analyzed to not interfere with the stability of the product. The natural formulation developed is under the legal requirements of the National Agency of Sanitary Monitoring of Brazil (Agência Nacional de Vigilância Sanitária), presenting an efficient conservation system.


Assuntos
Cosméticos , Lecythidaceae , Antioxidantes/química , Lecythidaceae/química , Extratos Vegetais/química
6.
Curr Pharm Des ; 26(14): 1532-1542, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32242782

RESUMO

BACKGROUND: Fusarium solani f. sp. piperis is a phytopathogen that causes one of the most destructive diseases in black pepper crops, resulting in significant economic and crop production losses. Consequently, the control of this fungal disease is a matter of current and relevant interest in agriculture. OBJECTIVE: The objective was to synthesize eugenol derivatives with antifungal activity. METHODS: In this study, using bimolecular nucleophilic substitution and click chemistry approaches, four new and three known eugenol derivatives were obtained. The eugenol derivatives were characterized and their antifungal and cytotoxic effects were evaluated. RESULTS: Eugenol derivative 4 (2-(4-allyl-2-methoxyphenoxy)-3-chloronaphthalene-1,4-dione) was the most active against F. solani f. sp. piperis and showed acceptable cytotoxicity. Compound 4 was two-fold more effective than tebuconazole in an antifungal assay and presented similar cytotoxicity in macrophages. The in silico study of ß-glucosidase suggests a potential interaction of 4 with amino acid residues by a cation-π interaction with residue Arg177 followed by a hydrogen bond with Glu596, indicating an important role in the interactions with 4, justifying the antifungal action of this compound. In addition, the cytotoxicity after metabolism was evaluated as a mimic assay with the S9 fraction in HepG2 cells. Compound 4 demonstrated maintenance of cytotoxicity, showing IC50 values of 11.18 ± 0.5 and 9.04 ± 0.2 µg mL-1 without and with the S9 fraction, respectively. In contrast, eugenol (257.9 ± 0.4 and 133.5 ± 0.8 µg mL-1), tebuconazole (34.94 ± 0.2 and 26.76 ± 0.17 µg mL-1) and especially carbendazim (251.0 ± 0.30 and 34.7 ± 0.10 µg mL-1) showed greater cytotoxicity after hepatic biotransformation. CONCLUSION: The results suggest that 4 is a potential candidate for use in the design of new and effective compounds that could control this pathogen.


Assuntos
Antifúngicos/farmacologia , Eugenol/síntese química , Fusarium , Eugenol/farmacologia , Testes de Sensibilidade Microbiana
7.
Arch Virol ; 165(5): 1211-1214, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32170392

RESUMO

Papaya sticky disease (PSD), which can destroy orchards, was first attributed to papaya meleira virus (PMeV). However, the discovery of papaya meleira virus 2 (PMeV2) associated with PSD plants impose the need to detect this viral complex. We developed a multiplex RT-PCR (mPCR) technique capable of detecting two viruses in a single assay from pre-flowering plant samples, which is a useful tool for early diagnosis of PSD. We also determined the limit of detection (LOD) using asymmetric plasmid dilutions of both PMeV and PMeV2, which revealed that a higher titer of one virus prevents detection of the other. Thus, this technique is an alternative method for detecting PMeV and PMeV2 in a single reaction.


Assuntos
Carica/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Totiviridae/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Totiviridae/classificação , Totiviridae/genética
8.
Food Res Int ; 116: 985-993, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717031

RESUMO

Juçara fruit (Euterpe edulis) has received attention due to its similarities to Euterpe oleracea (Açaí). The aim of this study was to evaluate the cytotoxicity, bioactive compounds, antioxidant capacities and chemopreventive activities of the fruit pulps of six populations of E. edulis (J1-J6) and one population of E. espiritosantense from different ecological regions. ESI(-)-FT-ICR-MS was used to evaluate the pulp composition. The varieties J1 and J4 presented higher polyphenol contents, while J2 and J5 showed higher anthocyanin contents. ESI-FT-ICR MS identified cyanidin-3-rutinoside (J1, J2, J3, J4, J5, J7), protocatechuic acid, methylhydroxybenzoate hexoside and rutin (J1 to J7) and malvidin-glicoside (J2 to J5). The J2, J3, J4, J5 and J6 samples inhibited inducible nitric oxide synthase (iNOS). The chemoprevention biomarker quinone reductase was significantly induced by J6. Pulp from plants J3, J4, J6 and J7 significantly reduced the inflammatory cytokine TNF-α, and J6 was selected as having the most potential for cultivation and consumption.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Euterpe/química , Frutas/química , Compostos Fitoquímicos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Benzotiazóis/química , Linhagem Celular Tumoral , Citocinas/metabolismo , Euterpe/genética , Frutas/genética , Genótipo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Células RAW 264.7 , Ácidos Sulfônicos/química
9.
Phytother Res ; 32(10): 2059-2068, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29998488

RESUMO

Toranja 'Burarama', Citrus maxima (Burm.) Merr. (Citrus grandis), is a new citrus discovered in the State of Espírito Santo, Brazil. As several varieties of citrus are known to possess antioxidant and cancer chemopreventive properties, the aim of the study was to evaluate in vitro if this Toranja possess these properties. The antioxidant activity, the potential to induce quinone reductase 1, and the influence on cell viability were measured. ESI(-)FT-ICR MS analysis was also performed and identified flavonoids, coumarins, and fatty acids in the extract. The ethyl acetate and methanolic extracts of the peels presented the highest antioxidant activity in vitro by DPPH (IC50  = 298.3 ± 2.6 µg/ml and 303.8 ± 0.4 µg/ml), ABTS assay (IC50  = 298.2 ± 6.4 µg/ml and 296.4 ± 2.5 µg/ml), and FRAP (IC50  = 234.6 ± 1.8 µg/ml and 398.1 ± 3.8 µg/ml). The ethyl acetate extract of the peel induced quinone reductase 1 activity in Hepa1c1c7 cells, indicating that C. maxima exhibited cancer chemopreventive properties.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Citrus/química , NAD(P)H Desidrogenase (Quinona)/metabolismo , Extratos Vegetais/farmacologia , Animais , Brasil , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/isolamento & purificação , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Frutas/química , Camundongos , Oxirredução
10.
Plant Cell Rep ; 37(7): 967-980, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29564545

RESUMO

KEY MESSAGE: Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.


Assuntos
Carica/genética , Carica/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Carica/efeitos dos fármacos , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/genética , Folhas de Planta/virologia , Vírus de RNA/patogenicidade , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Análise de Sequência de RNA
11.
Nat Prod Res ; 32(11): 1365-1368, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28669243

RESUMO

Ethanol extracts obtained from Schinus terebinthifolius Raddi fruits and leaves were active against Escherichia coli with MIC of 78 µg mL-1 for both extracts. Phytochemical analyses revealed a major presence of phenolic acids, tannins, fatty acids and acid triterpenes in the leaves and phenolic acids, fatty acids, acid triterpenes and biflavonoids in the fruits. Major compounds isolated from the plant, such as the acid triterpene schinol, the phenolic acid derivative ethyl gallate and the biflavonoids agathisflavone and tetrahydroamentoflavone, showed very little activity against E. coli. Bioautography of the ethanol extracts on silica gel plate showed inhibition zones for E. coli. They were removed from the plate and the compounds identified as a mixture of myristic, pentadecanoic, palmitic, heptadecanoic, stearic, nonadecanoic, eicosanoic, heneicosanoic and behenic fatty acids.


Assuntos
Anacardiaceae/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antibacterianos/química , Biflavonoides/isolamento & purificação , Biflavonoides/farmacologia , Frutas/química , Ácido Gálico/análogos & derivados , Ácido Gálico/isolamento & purificação , Ácido Gálico/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/análise , Extratos Vegetais/química , Folhas de Planta/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
12.
J Sci Food Agric ; 98(3): 1105-1116, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28722812

RESUMO

BACKGROUND: Pineapple is the fruit of Ananas comosus var. comosus plant, being cultivated in tropical areas and has high energy content and nutritional value. Herein, 30 samples of pineapple cv. Vitória were analyzed as a function of the maturation stage (0-5) and their physico-chemical parameters monitored. In addition, negative-ion mode electrospray ionization mass spectrometry [ESI(-)FT-ICR MS] was used to identify and semi-quantify primary and secondary metabolites present in the crude and phenolic extracts of pineapple, respectively. RESULTS: Physico-chemical tests show an increase in the total soluble solids (TSS) values and in the TSS/total titratable acidity ratio as a function of the maturity stage, where a maximum value was observed in stage 3 (¾ of the fruit is yellow, which corresponds to the color of the fruit peel). ESI(-)FT-ICR MS analysis for crude extracts showed the presence mainly of sugars as primary metabolites present in deprotonated molecule form ([M - H]- and [2 M - H]- ions) whereas, for phenolic fractions, 11 compounds were detected, being the most abundant in the third stage of maturation. This behavior was confirmed by quantitative analysis of total polyphenols. CONCLUSION: ESI-FT-ICR MS was efficient in identifying primary (carbohydrates and organic acids) and secondary metabolites (13 phenolic compounds) presents in the crude and phenolic extract of the samples, respectively. © 2017 Society of Chemical Industry.


Assuntos
Ananas/crescimento & desenvolvimento , Aromatizantes/química , Frutas/química , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Ananas/química , Carboidratos/química , Cor , Frutas/crescimento & desenvolvimento , Polifenóis/química
13.
J Proteomics ; 151: 275-283, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27343761

RESUMO

Papaya meleira virus (PMeV) infects papaya (Carica papaya L.) and leads to Papaya Sticky Disease (PSD) or "Meleira", characterized by a spontaneous exudation of latex from fruits and leaves only in the post-flowering developmental stage. The latex oxidizes in contact with air and accumulates as a sticky substance on the plant organs, impairing papaya fruit's marketing and exportation. To understand pre-flowering C. papaya resistance to PMeV, an LC-MS/MS-based label-free proteomics approach was used to assess the differential proteome of PMeV-infected pre-flowering C. papaya vs. uninfected (control) plants. In this study, 1333 proteins were identified, of which 111 proteins showed a significant abundance change (57 increased and 54 decreased) and supports the hypothesis of increased photosynthesis and reduction of 26S-proteassoma activity and cell-wall remodeling. All of these results suggest that increased photosynthetic activity has a positive effect on the induction of plant immunity, whereas the reduction of caspase-like activity and the observed changes in the cell-wall associated proteins impairs the full activation of defense response based on hypersensitive response and viral movement obstruction in pre-flowering C. papaya plants. BIOLOGICAL SIGNIFICANCE: The papaya (Carica papaya L.) fruit's production is severely limited by the occurrence of Papaya meleira virus (PMeV) infection, which causes Papaya Sticky Disease (PSD). Despite the efforts to understand key features involved with the plant×virus interaction, PSD management is still largely based on the observation of the first disease symptoms in the field, followed by the elimination of the diseased plants. However, C. papaya develops PSD only after flowering, i.e. about six-months after planting, and the virus inoculum sources are kept in field. The development of PMeV resistant genotypes is impaired by the limited knowledge about C. papaya resistance against viruses. The occurrence of a resistance/tolerance mechanism to PSD symptoms development prior to C. papaya flowering is considered in this study. Thus, field-grown and PMeV-infected C. papaya leaf samples were analyzed using proteomics, which revealed the modulation of photosynthesis-, 26S proteasome- and cell-wall remodeling-associated proteins. The data implicate a role for those systems in C. papaya resistance to viruses and support the idea of a partial resistance induction in the plants at pre-flowering stage. The specific proteins presented in the manuscript represent a starting point to the selection of key genes to be used in C. papaya improvement to PMeV infection resistance. The presented data also contribute to the understanding of virus-induced disease symptoms development in plants, of interest to the plant-virus interaction field.


Assuntos
Carica/microbiologia , Resistência à Doença/genética , Doenças das Plantas/virologia , Proteômica/métodos , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Cromatografia Líquida , Interações Hospedeiro-Patógeno , Estágios do Ciclo de Vida , Fotossíntese , Imunidade Vegetal/genética , Folhas de Planta/virologia , Vírus de Plantas , Complexo de Endopeptidases do Proteassoma , Espectrometria de Massas em Tandem
14.
Food Chem ; 204: 37-45, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26988473

RESUMO

Mangifera indica L., mango fruit, is consumed as a dietary supplement with purported health benefits; it is widely used in the food industry. Herein, the chemical profile of the Ubá mango at four distinct maturation stages was evaluated during the process of growth and maturity using negative-ion mode electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (ESI(-)FT-ICR MS) and physicochemical characterisation analysis (total titratable acidity (TA), total soluble solids (TSS), TSS/TA ratio, and total polyphenolic content). Primary (organic acids and sugars) and secondary metabolites (polyphenolic compounds) were mostly identified in the third maturation stage, thus indicating the best stage for harvesting and consuming the fruit. In addition, the potential cancer chemoprevention of the secondary metabolites (phenolic extracts obtained from mango samples) was evaluated using the induction of quinone reductase activity, concluding that fruit polyphenols have the potential for cancer chemoprevention.


Assuntos
Frutas/química , Mangifera/química , Animais , Linhagem Celular Tumoral , Fenômenos Químicos , Quimioprevenção , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Polifenóis/análise , Espectrometria de Massas por Ionização por Electrospray
15.
Viruses ; 7(4): 1853-70, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25856636

RESUMO

Papaya meleira virus (PMeV) is the causal agent of papaya sticky disease, which is characterized by a spontaneous exudation of fluid and aqueous latex from the papaya fruit and leaves. The latex oxidizes after atmospheric exposure, resulting in a sticky feature on the fruit from which the name of the disease originates. PMeV is an isometric virus particle with a double-stranded RNA (dsRNA) genome of approximately 12 Kb. Unusual for a plant virus, PMeV particles are localized on and linked to the polymers present in the latex. The ability of the PMeV to inhabit such a hostile environment demonstrates an intriguing interaction of the virus with the papaya. A hypersensitivity response is triggered against PMeV infection, and there is a reduction in the proteolytic activity of papaya latex during sticky disease. In papaya leaf tissues, stress responsive proteins, mostly calreticulin and proteasome-related proteins, are up regulated and proteins related to metabolism are down-regulated. Additionally, PMeV modifies the transcription of several miRNAs involved in the modulation of genes related to the ubiquitin-proteasome system. Until now, no PMeV resistant papaya genotype has been identified and roguing is the only viral control strategy available. However, a single inoculation of papaya plants with PMeV dsRNA delayed the progress of viral infection.


Assuntos
Carica/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , Carica/imunologia , Genoma Viral , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia
16.
Food Chem ; 174: 139-46, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25529663

RESUMO

Fresh and aged coconut water (CW) samples were introduced directly into the electrospray ionisation (ESI) source, and were combined with the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) technique to characterise in situ chemical compounds produced during natural ageing (from 0 to 15 days) at room temperature (23 °C). The ESI-FT-ICR MS readings were acquired and the data were correlated to conventional methodologies: pH, total titratable acidity (TA), total soluble solids, microbial analyses, and ultraviolet visibility (UV-vis) spectroscopy analysis. In general, the pH and TA values changed after 3 days of storage making the CW unsuitable for consumption. The ESI(-)-FT-ICR data also showed a clear and evident change in the chemical profile of CW after 3 days of ageing in the m/z 150-250 and 350-450 regions. Initially, the relative intensity of the natural markers (the m/z 215 and 377 ions-sugar molecules) decreases as a function of ageing time, with the last marker disappearing after 3 days of ageing. New chemical species were then identified such as: citric (m/z 191), galacturonic (m/z 193), gluconic (m/z 195), and saccharic (m/z 209) acids. ESI(-)-FT-ICR MS is a powerful tool to predict the physicochemical properties of CW, such as the pH and TA, where species such as fructose, glucose, sucrose, and gluconic acid can be used as natural markers to monitor the quality of the fruits.


Assuntos
Bebidas/análise , Cocos/química , Espectrometria de Massas/métodos , Análise de Fourier , Humanos , Peso Molecular
17.
PLoS One ; 9(7): e103401, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25072834

RESUMO

MicroRNAs are implicated in the response to biotic stresses. Papaya meleira virus (PMeV) is the causal agent of sticky disease, a commercially important pathology in papaya for which there are currently no resistant varieties. PMeV has a number of unusual features, such as residence in the laticifers of infected plants, and the response of the papaya to PMeV infection is not well understood. The protein levels of 20S proteasome subunits increase during PMeV infection, suggesting that proteolysis could be an important aspect of the plant defense response mechanism. To date, 10,598 plant microRNAs have been identified in the Plant miRNAs Database, but only two, miR162 and miR403, are from papaya. In this study, known plant microRNA sequences were used to search for potential microRNAs in the papaya genome. A total of 462 microRNAs, representing 72 microRNA families, were identified. The expression of 11 microRNAs, whose targets are involved in 20S and 26S proteasomal degradation and in other stress response pathways, was compared by real-time PCR in healthy and infected papaya leaf tissue. We found that the expression of miRNAs involved in proteasomal degradation increased in response to very low levels of PMeV titre and decreased as the viral titre increased. In contrast, miRNAs implicated in the plant response to biotic stress decreased their expression at very low level of PMeV and increased at high PMeV levels. Corroborating with this results, analysed target genes for this miRNAs had their expression modulated in a dependent manner. This study represents a comprehensive identification of conserved miRNAs inpapaya. The data presented here might help to complement the available molecular and genomic tools for the study of papaya. The differential expression of some miRNAs and identifying their target genes will be helpful for understanding the regulation and interaction of PMeV and papaya.


Assuntos
Carica/genética , MicroRNAs/metabolismo , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Sequência de Bases , Carica/metabolismo , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , MicroRNAs/classificação , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência , Carga Viral
18.
J Proteomics ; 75(11): 3191-8, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22465191

RESUMO

Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers' regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses.


Assuntos
Carica/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Vírus de Plantas , Proteômica , Carica/virologia
19.
J Virol Methods ; 180(1-2): 11-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22193169

RESUMO

Papaya meleira virus (PMeV) is the causal agent of papaya sticky disease. This study describes two methods for molecular diagnosis of PMeV using conventional and real-time PCR. These methods were shown to be more efficient than current methods of viral detection using extraction of PMeV dsRNA and observation of symptoms in the field. The methods described here were used to evaluate the effect of inoculation of papaya plants with purified PMeV dsRNA on the progress of PMeV infection. A single inoculation with PMeV dsRNA was observed to delay the progress of the virus infection by several weeks. The possibility of vertical transmission of PMeV was also investigated. No evidence was found for PMeV transmission through seeds collected from diseased fruit. The implications of these results for the epidemiology of PMeV and the management of papaya sticky disease are discussed.


Assuntos
Carica/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/patogenicidade , Vírus de RNA/patogenicidade , RNA de Cadeia Dupla/genética
20.
Fungal Biol ; 115(12): 1251-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22115444

RESUMO

Studies based on microbial ecology and antagonistic interactions play an important role in the development of new alternative strategies in controlling plant pathogens and are relevant to further biotechnological applications. Antagonistic interactions between the yeasts Candida krusei and Kloeckera apis isolated from rotten pineapple fruits, and two isolates of the pathogenic filamentous fungus Fusarium guttiforme (Syn.: Fusarium subglutinans f. sp. ananas) resistant and susceptible to fungicide benzimidazole were studied in broth culture, and on plate assays. The yeasts significantly reduced Fusarium conidial germination after 24h of cocultivation in broth culture, and also mycelial growth on plate assays. Slide coculture appeared to show attachment of yeasts to the hyphal surface and also slight morphological abnormalities caused by C. krusei. Filtrates of cocultures of fungi and yeasts inhibited fungal growth, but filtrates of the yeast cultures alone did not, suggesting that the antagonistic action of the yeasts is inducible. The F. guttiforme isolate sensitive to benzimidazole was most affected by both yeasts in pineapple juice, reaching a maximum of 36.5 % germ tube inhibition. This isolate was also inhibited by yeasts in mycocinogenic plate assay. These results demonstrated that C. krusei and K. apis are effective in inhibiting F. guttiforme growth and that the mode of action is associated with hyperparasitism and mycocinogenic activity.


Assuntos
Ananas/fisiologia , Antibiose , Candida/fisiologia , Fusarium/crescimento & desenvolvimento , Kloeckera/fisiologia , Doenças das Plantas/microbiologia , Ananas/microbiologia , Candida/isolamento & purificação , Fusarium/fisiologia , Kloeckera/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...