Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 8, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717625

RESUMO

Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ¹³C values for EPS (-25 to -30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS.

2.
Science ; 376(6593): 640-644, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35511981

RESUMO

Antarctica's fast-flowing ice streams drain the ice sheet, with their velocity modulated by subglacial water systems. Current knowledge of these water systems is limited to the shallow portions near the ice-bed interface, but hypothesized deeper groundwater could also influence ice streaming. Here, we use magnetotelluric and passive seismic data from Whillans Ice Stream, West Antarctica, to provide the first observations of deep sub-ice stream groundwater. Our data reveal a volume of groundwater within a >1-kilometer-thick sedimentary basin that is more than an order of magnitude larger than the known subglacial system. A vertical salinity gradient indicates exchange between paleo seawater at depth and contemporary basal meltwater above. Our results provide new constraints for subglacial water systems that affect ice streaming and subglacial biogeochemical processes.

3.
Rapid Commun Mass Spectrom ; 33(1): 140-148, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30304575

RESUMO

RATIONALE: The analysis of carbonate samples for the application of clumped isotopes to paleoclimate reconstruction necessitates smaller beam intensities. However, there is a relationship between beam intensity and pressure-dependent baseline (PBL), and therefore between beam intensity and the correction for PBL. Here we explain the relationship between PBL and beam intensity to develop a better correction protocol and an improved understanding of clumped isotope mass spectrometry. METHODS: We describe a beam size experiment using our Isoprime isotope ratio mass spectrometer in which samples of the carbonate standard IAEA-C1 were analyzed at 30, 50, and 70 nA to establish an optimal protocol and a new method to correct for PBL using the theoretical constraint of invariable Δ47 over a range of δ47 (bulk isotope composition) values. We also explore the effects of both over- and under-correction of PBL on equilibrated and heated gas samples to understand the effect of mis-correction of PBL. RESULTS: The results of our beam size experiments showed that a direct measurement of the baseline consistently introduced variability to measurements of the Δ47 of heated gases, equilibrated gases, and carbonate standards. These results necessitated a new protocol to account for PBL in our system. Our new approach flattens the reference frame line slope to 0 and, importantly, reduces the variability of data points about the heated gas line. We also describe, for the first time, an empirically derived description of the compositional effect of PBL. CONCLUSIONS: A seemingly small change in our isotope ratio mass spectrometer resulted in a better understanding of PBL, for which we have developed an empirically based correction protocol to apply. Our new protocol has the potential to reduce analytical time for laboratories measuring PBL, and supports the need for carbonate mineral-based clumped isotope standards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...