Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infez Med ; 32(1): 76-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456031

RESUMO

Background: a few pathologic and ultrastructural findings of monkeypox skin lesions are available in the literature. To integrate such evidence, we aimed to describe the pathologic features of monkeypox skin lesions and to show monkeypox virions by transmission electron microscopy (TEM). Methods: we studied the cutaneous biopsies of three patients affected by monkeypox during the 2022 monkeypox outbreak. Skin biopsies have been collected only from body sites with a recent laboratory-confirmed mpox virus infection, defined by a polymerase chain reaction (PCR) positive result in specimens taken through skin swabs. Results: in all the samples the epidermis showed keratinocytes ballooning degeneration; perivascular/periadnexal infiltrates composed of neutrophils and lymphocytes were observed in the deep dermis. Immunohistochemistry showed that the infiltrate was mostly composed of CD3+ T-cells. TEM revealed monkeypox virus-like particles in various stages of morphogenesis in the dermis and epidermis; virions were interspersed among keratinocytes and within their cytoplasm. At the intracellular level, virions showed a biconcaveshaped central core, surrounded by lateral bodies and an external membrane; they also appeared as rectangular, brick-shaped, or oval particles with eccentric nucleoids. The histologic features of our skin samples confirmed the few other studies on this topic, except for the eosinophilic inclusions of the cytoplasm of keratinocytes (Guarnieri's bodies). Conclusion: the role of molecular biology is crucial for monkeypox diagnosis but when it is not disposable and/or in doubtful cases, skin biopsy and TEM may be helpful to establish the diagnosis.

2.
Mol Cell Biochem ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082185

RESUMO

Anthracyclines' cardiotoxicity involves an accelerated generation of reactive oxygen species. This oxidative damage has been found to accelerate the expression of hexose-6P-dehydrogenase (H6PD), that channels glucose-6-phosphate (G6P) through the pentose phosphate pathway (PPP) confined within the endoplasmic/sarcoplasmic reticulum (SR). To verify the role of SR-PPP in the defense mechanisms activated by doxorubicin (DXR) in cardiomyocytes, we tested the effect of this drug in H6PD knockout mice (H6PD-/-). Twenty-eight wildtype (WT) and 32 H6PD-/- mice were divided into four groups to be treated with intraperitoneal administration of saline (untreated) or DXR (8 mg/Kg once a week for 3 weeks). One week thereafter, survivors underwent imaging of 18F-deoxyglucose (FDG) uptake and were sacrificed to evaluate the levels of H6PD, glucose-6P-dehydrogenase (G6PD), G6P transporter (G6PT), and malondialdehyde. The mRNA levels of SR Ca2+-ATPase 2 (Serca2) and ryanodine receptors 2 (RyR2) were evaluated and complemented with Hematoxylin/Eosin staining and transmission electron microscopy. During the treatment period, 1/14 DXR-WT and 12/18 DXR-H6PD-/- died. At microPET, DXR-H6PD-/- survivors displayed an increase in left ventricular size (p < 0.001) coupled with a decreased urinary output, suggesting a severe hemodynamic impairment. At ex vivo analysis, H6PD-/- condition was associated with an oxidative damage independent of treatment type. DXR increased H6PD expression only in WT mice, while G6PT abundance increased in both groups, mismatching a generalized decrease of G6PD levels. Switching-off SR-PPP impaired reticular accumulation of Ca2+ decelerating Serca2 expression and upregulating RyR2 mRNA level. It thus altered mitochondrial ultrastructure eventually resulting in a cardiomyocyte loss. The recognized vulnerability of SR to the anthracycline oxidative damage is counterbalanced by an acceleration of G6P flux through a PPP confined within the reticular lumen. The interplay of SR-PPP with the intracellular Ca2+ exchanges regulators in cardiomyocytes configure the reticular PPP as a potential new target for strategies aimed to decrease anthracycline toxicity.

3.
J Peripher Nerv Syst ; 28(4): 620-628, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897416

RESUMO

BACKGROUND AND AIMS: POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS: Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS: Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION: Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.


Assuntos
Doenças Desmielinizantes , Doenças do Sistema Nervoso Periférico , Polineuropatias , RNA Polimerase III , Adolescente , Humanos , Axônios , Doenças Desmielinizantes/genética , Mutação , Fibras Nervosas/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Polineuropatias/genética , Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
4.
Cancers (Basel) ; 14(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35884472

RESUMO

To date, the 5-year overall survival rate of 60% for early-stage non-small cell lung cancer (NSCLC) is still unsatisfactory. Therefore, reliable prognostic factors are needed. Growing evidence shows that cancer progression may depend on an interconnection between cancer cells and the surrounding tumor microenvironment; hence, circulating molecules may represent promising markers of cancer recurrence. In order to identify a prognostic score, we performed in-depth high-throughput analyses of plasma circulating markers, including exosomal microRNAs (Exo-miR) and peptides, in 67 radically resected NSCLCs. The miRnome profile selected the Exo-miR-130a-3p as the most overexpressed in relapsed patients. Peptidome analysis identified four progressively more degraded forms of fibrinopeptide A (FpA), which were depleted in progressing patients. Notably, stepwise Cox regression analysis selected Exo-miR-130a-3p and the greatest FpA (2-16) to build a score predictive of recurrence, where high-risk patients had 18 months of median disease-free survival. Moreover, in vitro transfections showed that higher levels of miR-130a-3p lead to a deregulation of pathways involved in metastasis and angiogenesis, including the coagulation process and metalloprotease increase which might be linked to FpA reduction. In conclusion, by integrating circulating markers, the identified risk score may help clinicians predict early-stage NSCLC patients who are more likely to relapse after primary surgery.

5.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573024

RESUMO

Recent studies reported that the uptake of [18F]-fluorodeoxyglucose (FDG) is increased in the spinal cord (SC) and decreased in the motor cortex (MC) of patients with ALS, suggesting that the disease might differently affect the two nervous districts with different time sequence or with different mechanisms. Here we show that MC and SC astrocytes harvested from newborn B6SJL-Tg (SOD1G93A) 1Gur mice could play different roles in the pathogenesis of the disease. Spectrophotometric and cytofluorimetric analyses showed an increase in redox stress, a decrease in antioxidant capacity and a relative mitochondria respiratory uncoupling in MC SOD1G93A astrocytes. By contrast, SC mutated cells showed a higher endurance against oxidative damage, through the increase in antioxidant defense, and a preserved respiratory function. FDG uptake reproduced the metabolic response observed in ALS patients: SOD1G93A mutation caused a selective enhancement in tracer retention only in mutated SC astrocytes, matching the activity of the reticular pentose phosphate pathway and, thus, of hexose-6P dehydrogenase. Finally, both MC and SC mutated astrocytes were characterized by an impressive ultrastructural enlargement of the endoplasmic reticulum (ER) and impairment in ER-mitochondria networking, more evident in mutated MC than in SC cells. Thus, SOD1G93A mutation differently impaired MC and SC astrocyte biology in a very early stage of life.

6.
EJNMMI Res ; 10(1): 76, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638178

RESUMO

BACKGROUND: We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal muscles predicts disease aggressiveness in patients with amyotrophic lateral sclerosis (ALS). The present experimental study aimed to assess whether this predictive potential reflects the link between FDG uptake and redox stress that has been previously reported in different tissues and disease models. METHODS: The study included 15 SOD1G93A mice (as experimental ALS model) and 15 wildtype mice (around 120 days old). Mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested quadriceps and hearts by biochemical, immunohistochemical, and immunofluorescence analysis. Colocalization between the endoplasmic reticulum (ER) and the fluorescent FDG analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was performed in fresh skeletal muscle sections. Finally, mitochondrial ultrastructure and bioenergetics were evaluated in harvested quadriceps and hearts. RESULTS: FDG retention was significantly higher in hindlimb skeletal muscles of symptomatic SOD1G93A mice with respect to control ones. This difference was not explained by any acceleration in glucose degradation through glycolysis or cytosolic pentose phosphate pathway (PPP). Similarly, it was independent of inflammatory infiltration. Rather, the high FDG retention in SOD1G93A skeletal muscle was associated with an accelerated generation of reactive oxygen species. This redox stress selectively involved the ER and the local PPP triggered by hexose-6P-dehydrogenase. ER involvement was confirmed by the colocalization of the 2-NBDG with a vital ER tracker. The oxidative damage in transgenic skeletal muscle was associated with a severe impairment in the crosstalk between ER and mitochondria combined with alterations in mitochondrial ultrastructure and fusion/fission balance. The expected respiratory damage was confirmed by a deceleration in ATP synthesis and oxygen consumption rate. These same abnormalities were represented to a markedly lower degree in the myocardium, as a sample of non-voluntary striated muscle. CONCLUSION: Skeletal muscle of SOD1G93A mice reproduces the increased FDG uptake observed in ALS patients. This finding reflects the selective activation of the ER-PPP in response to significant redox stress associated with alterations of mitochondrial ultrastructure, networking, and connection with the ER itself. This scenario is less severe in cardiomyocytes suggesting a relevant role for either communication with synaptic plaque or contraction dynamics.

7.
Front Neurol ; 10: 1218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824401

RESUMO

Nerve biopsy represents the conclusive step in the diagnostic work-up of peripheral neuropathies, and its diagnostic yield is still debated. The aim of this study is to consider the impact of nerve biopsy on reaching a useful diagnosis in different peripheral neuropathies and its changing over time. We retrospectively analyzed 1,179 sural nerve biopsies performed in the period 1981-2017 at Neurological Clinic of Policlinico San Martino (Genoa). We relied on medical records and collected both clinical and pathological data in a database. Biopsy provided univocal diagnoses in 53% of cases (with an increase over time), multiple diagnostic options in 14%, while diagnosis was undetermined in 33% (undetermined reports decreased during the years). In 57% of patients, the pre-biopsy suspicion was confirmed, while in 43% sural biopsy modified the clinical diagnosis. The highest yield was in axonal neuropathies (29% undetermined reports vs. 40% in demyelinating and 48% in mixed neuropathies). In 68% of patients with vasculitic neuropathy, this etiology was already suspected, whereas in 32% nerve biopsy modified the clinical diagnosis. During the years, the number of annually performed biopsies decreased significantly (p = 0.007), with an increase in the mean age of patients (p < 0.0001). The percentage of hereditary neuropathies had a significant decrease (p = 0.016), while the rate of vasculitic and chronic inflammatory neuropathies increased (p < 0.0001). This is the largest Italian study addressing the yield of sural nerve biopsy. During the years, we observed a progressive refinement of the indication of this procedure, which confirms its utility for interstitial neuropathies, particularly if non-systemic vasculitic neuropathy is suspected.

9.
Neurobiol Dis ; 95: 145-57, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27431093

RESUMO

Charcot-Marie-Tooth 1A (CMT1A) is a demyelinating hereditary neuropathy for which pharmacological treatments are not yet available. An abnormally high intracellular Ca(2+) concentration was observed in Schwann cells (SC) from CMT1A rats, caused by the PMP22-mediated overexpression of the P2X7 purinoceptor. The purpose of this study was to investigate the tolerability and therapeutic potential of a pharmacological antagonist of the P2X7 receptor (A438079) in CMT1A. A438079 ameliorated in vitro myelination of organotypic DRG cultures from CMT1A rats. Furthermore, we performed an experimental therapeutic trial in PMP22 transgenic and in wild-type rats. A preliminary dose-escalation trial showed that 3mg/kg A438079 administered via intraperitoneal injection every 24h for four weeks was well tolerated by wild type and CMT1A rats. Affected rats treated with 3mg/kg A438079 revealed a significant improvement of the muscle strength, when compared to placebo controls. Importantly, histologic analysis revealed a significant increase of the total number of myelinated axons in tibial nerves. Moreover, a significant decrease of the hypermyelination of small caliber axons and a significant increase of the frequency and diameter of large caliber myelinated axons was highlighted. An improved distal motor latencies was recorded, whereas compound muscle action potentials (CMAP) remained unaltered. A438079 reduced the SC differentiation defect in CMT1A rats. These results show that pharmacological inhibition of the P2X7 receptor is well tolerated in CMT1A rats and represents a proof-of-principle that antagonizing this pathway may correct the molecular derangements and improve the clinical phenotype in the CMT1A neuropathy.


Assuntos
Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/patologia , Proteínas da Mielina/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Células de Schwann/metabolismo , Animais , Animais Geneticamente Modificados , Doença de Charcot-Marie-Tooth/fisiopatologia , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Proteínas da Mielina/genética , Fenótipo , Ratos Sprague-Dawley , Ratos Transgênicos
10.
J Neuroimmune Pharmacol ; 8(4): 944-55, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23625177

RESUMO

Expression and function of the immunoregulatory molecule HLA-E was investigated in patients with relapsing-remitting (RR) multiple sclerosis (MS). Serum and cerebrospinal fluid (CSF) soluble (s)HLA-E and -G levels were measured by ELISA in 80 RRMS patients. Controls were patients with other inflammatory neurological disorders (OIND, n = 81) and noninflammatory neurological disorders (NIND, n = 86). Serum sHLA-E concentrations were higher in RRMS than in NIND patients only. CSF sHLA-E concentrations were higher in RRMS than controls. Increased CSF sHLA-E levels were detected in MRI inactive and clinically stable RRMS patients. sHLA-E intrathecal synthesis (ITS) was higher in RRMS than controls, and the number of patients with sHLA-E ITS above cut-off was higher i) in MS than controls, and ii) in clinically stable than clinically active MS patients. sHLA-E CSF levels and ITS correlated with i) the same sHLA-G parameters, and ii) disease duration. HLA-E expression and co-expression with CD markers were investigated in MS plaques from three different cases by immunohistochemistry and confocal microscopy, respectively. Infiltrating T lymphocytes and macrophages, as well as resident microglial cells and astrocytes expressed HLA-E. CSF samples from MS patients were finally tested for inhibitory activity of in vitro CTL and NK cell mediated cytotoxicity. sHLA-E⁺ were more effective than sHLA-E⁻ CSF samples in such inhibition. Maximum inhibition was achieved with sHLA-E⁺/sHLA-G⁺ CSF samples In conclusion, increased sHLA-E CSF levels may play an immunomodulatory role in MS, contributing to the inhibition of intrathecal inflammatory response. The potential of sHLA-E as biomarker of MS activity warrants further investigation.


Assuntos
Antígenos HLA-G/líquido cefalorraquidiano , Antígenos de Histocompatibilidade Classe I/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Feminino , Antígenos HLA-G/sangue , Antígenos de Histocompatibilidade Classe I/sangue , Humanos , Inflamação/líquido cefalorraquidiano , Inflamação/diagnóstico , Inflamação/patologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Punção Espinal , Antígenos HLA-E
11.
Int J Biochem Cell Biol ; 41(12): 2511-21, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19695339

RESUMO

In eukaryotic cells several physiologic and pathologic conditions generate the accumulation of unfolded proteins in the endoplasmic reticulum (ER), leading to ER stress. To restore normal function, some ER transmembrane proteins sense the ER stress and activate coordinated signalling pathways collectively called the Unfolded Protein Response (UPR). Little is known on how the UPR relates to post-ER compartments and to the export from the ER of newly synthesized proteins. Here, we report that the ER stress response induced by either thapsigargin or nitric oxide modifies the dynamics of the intracellular distribution of ERGIC-53 and GM130, two markers of the ER Golgi Intermediate Compartment and of the cis-Golgi, respectively. In addition, induction of ER stress alters the morphology of the ERGIC and the Golgi complex and interferes with the reformation of both compartments. Moreover, ER stress rapidly reduces the transport to the Golgi complex of the temperature sensitive mutant of the Vesicular Stomatitis Virus G Glycoprotein (VSV-G) fused with the Green Fluorescent Protein (ts045G), without apparently decreasing the amount of the protein competent for export. Interestingly, a parallel rapid reduction of the number of Sec31 labelled fluorescent puncta on the ER membranes does occur, thus suggesting that the ER stress alters the ER export and the dynamic of post-ER compartments by rapidly targeting the formation of COPII-coated transport intermediates.


Assuntos
Autoantígenos/metabolismo , Biomarcadores/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Lectinas de Ligação a Manose/metabolismo , Proteínas de Membrana/metabolismo , Tapsigargina/farmacologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/efeitos dos fármacos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Linhagem Celular , Estruturas Celulares/efeitos dos fármacos , Estruturas Celulares/metabolismo , Estruturas Celulares/ultraestrutura , Retículo Endoplasmático , Complexo de Golgi , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Humanos , Glicoproteínas de Membrana/metabolismo , Engenharia de Proteínas , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Resposta a Proteínas não Dobradas , Proteínas do Envelope Viral/metabolismo
12.
Hum Mol Genet ; 17(22): 3487-501, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18697795

RESUMO

The protein product of the ocular albinism type 1 gene, named OA1, is a pigment cell-specific G protein-coupled receptor exclusively localized to intracellular organelles, namely lysosomes and melanosomes. Loss of OA1 function leads to the formation of macromelanosomes, suggesting that this receptor is implicated in organelle biogenesis, however the mechanism involved in the pathogenesis of the disease remains obscure. We report here the identification of an unexpected abnormality in melanosome distribution both in retinal pigment epithelium (RPE) and skin melanocytes of Oa1-knock-out (KO) mice, consisting in a displacement of the organelles from the central cytoplasm towards the cell periphery. Despite their depletion from the microtubule (MT)-enriched perinuclear region, Oa1-KO melanosomes were able to aggregate at the centrosome upon disruption of the actin cytoskeleton or expression of a dominant-negative construct of myosin Va. Consistently, quantification of organelle transport in living cells revealed that Oa1-KO melanosomes displayed a severe reduction in MT-based motility; however, this defect was rescued to normal following inhibition of actin-dependent capture at the cell periphery. Together, these data point to a defective regulation of organelle transport in the absence of OA1 and imply that the cytoskeleton might represent a downstream effector of this receptor. Furthermore, our results enlighten a novel function for OA1 in pigment cells and suggest that ocular albinism type 1 might result from a different pathogenetic mechanism than previously thought, based on an organelle-autonomous signalling pathway implicated in the regulation of both membrane traffic and transport.


Assuntos
Proteínas do Olho/metabolismo , Melanócitos/metabolismo , Melanossomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Albinismo Ocular/genética , Albinismo Ocular/metabolismo , Animais , Citoesqueleto/fisiologia , Proteínas do Olho/genética , Humanos , Melanócitos/patologia , Melanócitos/ultraestrutura , Melanossomas/genética , Melanossomas/ultraestrutura , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Epitélio Pigmentado Ocular/citologia , Receptores Acoplados a Proteínas G/genética
13.
Hum Mol Genet ; 17(1): 119-29, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17913701

RESUMO

Most lysosomal storage disorders (LSDs) are caused by deficiencies of lysosomal hydrolases. While LSDs were among the first inherited diseases for which the underlying biochemical defects were identified, the mechanisms from enzyme deficiency to cell death are poorly understood. Here we show that lysosomal storage impairs autophagic delivery of bulk cytosolic contents to lysosomes. By studying the mouse models of two LSDs associated with severe neurodegeneration, multiple sulfatase deficiency (MSD) and mucopolysaccharidosis type IIIA (MPSIIIA), we observed an accumulation of autophagosomes resulting from defective autophagosome-lysosome fusion. An impairment of the autophagic pathway was demonstrated by the inefficient degradation of exogenous aggregate-prone proteins (i.e. expanded huntingtin and mutated alpha-synuclein) in cells from LSD mice. This impairment resulted in massive accumulation of polyubiquitinated proteins and of dysfunctional mitochondria which are the putative mediators of cell death. These data identify LSDs as 'autophagy disorders' and suggest the presence of common mechanisms in the pathogenesis of these and other neurodegenerative diseases.


Assuntos
Autofagia/fisiologia , Doenças por Armazenamento dos Lisossomos/patologia , Animais , Autofagia/genética , Sequência de Bases , Células Cultivadas , Primers do DNA/genética , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/fisiopatologia , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/genética , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/patologia , Doenças por Armazenamento dos Lisossomos do Sistema Nervoso/fisiopatologia , Lisossomos/patologia , Fusão de Membrana , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/patologia , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Mucopolissacaridose III/fisiopatologia , Doença da Deficiência de Múltiplas Sulfatases/genética , Doença da Deficiência de Múltiplas Sulfatases/patologia , Doença da Deficiência de Múltiplas Sulfatases/fisiopatologia , Degeneração Neural/genética , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Fagossomos/patologia , Transfecção , Ubiquitinação
14.
J Neurochem ; 96(3): 656-68, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16405496

RESUMO

Glial subcellular re-sealed particles (referred to as gliosomes here) were purified from rat cerebral cortex and investigated for their ability to release glutamate. Confocal microscopy showed that the glia-specific proteins glial fibrillary acidic protein (GFAP) and S-100, but not the neuronal proteins 95-kDa postsynaptic density protein (PSD-95), microtubule-associated protein 2 (MAP-2) and beta-tubulin III, were enriched in purified gliosomes. Furthermore, gliosomes exhibited labelling neither for integrin-alphaM nor for myelin basic protein, which are specific for microglia and oligodendrocytes respectively. The Ca2+ ionophore ionomycin (0.1-5 microm) efficiently stimulated the release of tritium from gliosomes pre-labelled with [3H]d-aspartate and of endogenous glutamate in a Ca(2+)-dependent and bafilomycin A1-sensitive manner, suggesting the involvement of an exocytotic process. Accordingly, ionomycin was found to induce a Ca(2+)-dependent increase in the vesicular fusion rate, when exocytosis was monitored with acridine orange. ATP stimulated [3H]d-aspartate release in a concentration- (0.1-3 mm) and Ca(2+)-dependent manner. The gliosomal fraction contained proteins of the exocytotic machinery [syntaxin-1, vesicular-associated membrane protein type 2 (VAMP-2), 23-kDa synaptosome-associated protein (SNAP-23) and 25-kDa synaptosome-associated protein (SNAP-25)] co-existing with GFAP immunoreactivity. Moreover, GFAP or VAMP-2 co-expressed with the vesicular glutamate transporter type 1. Consistent with ultrastructural analysis, several approximately 30-nm non-clustered vesicles were present in the gliosome cytoplasm. It is concluded that gliosomes purified from adult brain contain glutamate-accumulating vesicles and can release the amino acid by a process resembling neuronal exocytosis.


Assuntos
Córtex Cerebral/citologia , Exocitose/fisiologia , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Animais , Antígeno CD11b/metabolismo , Cálcio/farmacologia , Células Cultivadas , Ácido D-Aspártico/metabolismo , Proteína 4 Homóloga a Disks-Large , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Imunofluorescência/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ionomicina/farmacologia , Ionóforos/farmacologia , L-Lactato Desidrogenase/metabolismo , Macrolídeos/farmacologia , Masculino , Proteínas de Membrana/metabolismo , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Básica da Mielina/metabolismo , Neuroglia/ultraestrutura , Propionatos/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas S100/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Fatores de Tempo , Trítio/metabolismo , Tubulina (Proteína)/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas de Transporte Vesicular/metabolismo
15.
Invest Ophthalmol Vis Sci ; 46(12): 4358-64, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16303920

RESUMO

PURPOSE: The authors took advantage of the Oa1 mutant mouse in combination with other albinism mouse models (i.e., Tyrosinase and membrane-associated transporter protein [Matp]) to study the function of Oa1, the gene mutated in ocular albinism type 1, in the RPE during development and after birth. METHODS: Enzyme activity and protein localization were analyzed by immunohistochemistry of tyrosinase (Tyr) in Oa1-null mice. Ultrastructural analysis and morphometry were performed by electron microscopy, of the RPE in Oa1-knockout mouse and double-mutant mice of Oa1 with either Tyr or Matp. RESULTS: Differently from other albinism models, Tyr activity was not impaired in Oa1-/- eyes. Hypopigmentation of the RPE in Oa1-/- mice is due to a reduced number of melanosomes. Analysis of Oa1-/-;Tyr(c-2J)/Tyr(c-2J) and Oa1-/-;Matp(uw)/Matp(uw) double-knockout mice, which display a block at stages II and III of melanosome maturation, respectively, revealed that Oa1 controls the rate of melanosome biogenesis at early stages of the organellogenesis, whereas the control on the organelle size is exerted at the final stage of melanosome development (stage IV). CONCLUSIONS: The findings indicate that Oa1 is involved in the regulation of melanosome maturation at two steps. Acting at early maturation stages, Oa1 controls the abundance of melanosomes in RPE cells. At later stages, Oa1 has a function in the maintenance of a correct melanosomal size. This study helps to define ocular albinism type 1 as a defect in melanosome organellogenesis and not in melanin production.


Assuntos
Albinismo Ocular/metabolismo , Proteínas do Olho/fisiologia , Melanossomas/metabolismo , Glicoproteínas de Membrana/fisiologia , Epitélio Pigmentado Ocular/metabolismo , Albinismo Ocular/genética , Animais , Técnicas de Cultura de Células , Técnica Indireta de Fluorescência para Anticorpo , Hipopigmentação/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Organogênese , Epitélio Pigmentado Ocular/ultraestrutura , Receptores Acoplados a Proteínas G , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores
16.
Mol Ther ; 12(4): 652-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16023414

RESUMO

X-linked recessive ocular albinism type I (OA1) is due to mutations in the OA1 gene (approved gene symbol GPR143), which is expressed in the retinal pigment epithelium (RPE). The Oa1 (Gpr143) knockout mouse (Oa1(-/-)) model recapitulates many of the OA1 retinal morphological anomalies, including a lower number of melanosomes of increased size in the RPE. The Oa1(-/-) mouse also displays some of the retinal developmental abnormalities observed in albino patients such as misrouting of the optic tracts. Here, we show that these anomalies are associated with retinal electrophysiological abnormalities, including significant decrease in a- and b-wave amplitude and delayed recovery of b-wave amplitude from photoreceptor desensitization following bright light exposure. This suggests that lack of Oa1 in the RPE impacts on photoreceptor activity. More interestingly, adeno-associated viral vector-mediated Oa1 gene transfer to the retina of the Oa1(-/-) mouse model results in significant recovery of its retinal functional abnormalities. In addition, Oa1 retinal gene transfer increases the number of melanosomes in the Oa1(-/-) mouse RPE. Our data show that gene transfer to the adult retina unexpectedly rescues both functional and morphological abnormalities in a retinal developmental disorder, opening novel potential therapeutic perspectives for this and other forms of albinism.


Assuntos
Albinismo Ocular/terapia , Dependovirus/genética , Terapia Genética , Vetores Genéticos , Retina/fisiopatologia , Albinismo Ocular/genética , Albinismo Ocular/fisiopatologia , Animais , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Receptores Acoplados a Proteínas G/genética , Retina/diagnóstico por imagem , Deleção de Sequência , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...