Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1866(3): 184291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296218

RESUMO

Ionic liquids (ILs) are salts composed of a combination of organic or inorganic cations and anions characterized by a low melting point, often below 100 °C. This property, together with an extremely low vapor pressure, low flammability and high thermal stability, makes them suitable for replacing canonical organic solvents, with a reduction of industrial activities impact on the environment. Although in the last decades the eco-compatibility of ILs has been extensively verified through toxicological tests performed on model organisms, a detailed understanding of the interaction of these compounds with biological membranes is far from being exhaustive. In this context, we have chosen to evaluate the effect of some ILs on native membranes by using chromatophores, photosynthetic vesicles that can be isolated from Rhodobacter capsulatus, a member of the purple non­sulfur bacteria. Here, carotenoids associated with the light-harvesting complex II, act as endogenous spectral probes of the transmembrane electrical potential (ΔΨ). By measuring through time-resolved absorption spectroscopy the evolution of the carotenoid band shift induced by a single excitation of the photosynthetic reaction center, information on the ΔΨ dissipation due to ionic currents across the membrane can be obtained. We found that some ILs cause a rather fast dissipation of the transmembrane ΔΨ even at low concentrations, and that this behavior is dose-dependent. By using two different models to analyze the decay of the carotenoid signals, we attempted to interpret at a mechanistic level the marked increase of ionic permeability caused by specific ILs.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Solventes/química , Análise Espectral , Permeabilidade , Carotenoides
2.
Biochim Biophys Acta Bioenerg ; 1862(7): 148413, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33716033

RESUMO

The kinetics of flash-induced re-reduction of the Photosystem II (PS II) primary electron donor P680 was studied in solution and in trehalose glassy matrices at different relative humidity. In solution, and in the re-dissolved glass, kinetics were dominated by two fast components with lifetimes in the range of 2-7 µs, which accounted for >85% of the decay. These components were ascribed to the direct electron transfer from the redox-active tyrosine YZ to P680+. The minor slower components were due to charge recombination between the primary plastoquinone acceptor QA- and P680+. Incorporation of the PS II complex into the trehalose glassy matrix and its successive dehydration caused a progressive increase in the lifetime of all kinetic phases, accompanied by an increase of the amplitudes of the slower phases at the expense of the faster phases. At 63% relative humidity the fast components contribution dropped to ~50%. A further dehydration of the trehalose glass did not change the lifetimes and contribution of the kinetic components. This effect was ascribed to the decrease of conformational mobility of the protein domain between YZ and P680, which resulted in the inhibition of YZ â†’ P680+ electron transfer in about half of the PS II population, wherein the recombination between QA- and P680+ occurred. The data indicate that PS II binds a larger number of water molecules as compared to PS I complexes. We conclude that our data disprove the "water replacement" hypothesis of trehalose matrix biopreservation.


Assuntos
Elétrons , Manganês/deficiência , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Trealose/química , Água/química , Transporte de Elétrons , Oxirredução
3.
Proc Natl Acad Sci U S A ; 116(51): 26057-26065, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772010

RESUMO

Protein aggregation is a complex physiological process, primarily determined by stress-related factors revealing the hidden aggregation propensity of proteins that otherwise are fully soluble. Here we report a mechanism by which glycolytic glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana (AtGAPC1) is primed to form insoluble aggregates by the glutathionylation of its catalytic cysteine (Cys149). Following a lag phase, glutathionylated AtGAPC1 initiates a self-aggregation process resulting in the formation of branched chains of globular particles made of partially misfolded and totally inactive proteins. GSH molecules within AtGAPC1 active sites are suggested to provide the initial destabilizing signal. The following removal of glutathione by the formation of an intramolecular disulfide bond between Cys149 and Cys153 reinforces the aggregation process. Physiological reductases, thioredoxins and glutaredoxins, could not dissolve AtGAPC1 aggregates but could efficiently contrast their growth. Besides acting as a protective mechanism against overoxidation, S-glutathionylation of AtGAPC1 triggers an unexpected aggregation pathway with completely different and still unexplored physiological implications.


Assuntos
Arabidopsis/metabolismo , Glutationa/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Anotação de Sequência Molecular , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico , Glutarredoxinas/metabolismo , Glutationa/química , Dissulfeto de Glutationa/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Cinética , Simulação de Dinâmica Molecular , Oxirredução , Dobramento de Proteína , Solubilidade , Tiorredoxinas/metabolismo
4.
Biochim Biophys Acta Bioenerg ; 1860(2): 167-179, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30550726

RESUMO

The ubihydroquinone:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important enzyme for photosynthesis and respiration. In bacteria like Rhodobacter capsulatus, this membrane complex has three subunits, the iron­sulfur protein (ISP) with its Fe2S2 cluster, cyt c1 and cyt b, forming two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the electron transfer pathways originating from QH2 oxidation are known, but their associated proton release routes are less well defined. Earlier, we demonstrated that the His291 of cyt b is important for this latter process. In this work, using the bacterial cyt bc1 and site directed mutagenesis, we show that Lys329 of cyt b is also critical for electron and proton transfer at the Qo site. Of the mutants examined, Lys329Arg was photosynthesis proficient and had quasi-wild type cyt bc1 activity. In contrast, the Lys329Ala and Lys329Asp were photosynthesis-impaired and contained defective but assembled cyt bc1. In particular, the bifurcated electron transfer and associated proton(s) release reactions occurring during QH2 oxidation were drastically impaired in Lys329Asp mutant. Furthermore, in silico docking studies showed that in this mutant the location and the H-bonding network around the Fe2S2 cluster of ISP on cyt b surface was different than the wild type enzyme. Based on these experimental findings and theoretical considerations, we propose that the presence of a positive charge at position 329 of cyt b is critical for efficient electron transfer and proton release for QH2 oxidation at the Qo site of cyt bc1.


Assuntos
Citocromos b/química , Lisina/metabolismo , Rhodobacter capsulatus/metabolismo , Citocromos b/metabolismo , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Fotossíntese/genética , Prótons , Rhodobacter capsulatus/enzimologia , Rhodobacter capsulatus/genética , Ubiquinona/metabolismo
5.
RSC Adv ; 9(27): 15350-15356, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35514834

RESUMO

A fluorescent derivative of trehalose with two dansyl groups (DAT) has been synthesized. It is characterised by a large Stokes shift, good permeability in human living cells and a well detectable fluorescent signal within the cells. Notably, in intestinal cells DAT is sequestered in vesicles induced by trehalose pre-treatment and colocalizes with lipid droplets.

6.
Phys Chem Chem Phys ; 19(41): 28388-28400, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29034914

RESUMO

Using isotope labeled water (D2O and H217O) and pulsed W-band (94 GHz) high-field multiresonance EPR spectroscopies, such as ELDOR-detected NMR and ENDOR, the biologically important question of detection and quantification of local water in proteins is addressed. A bacterial reaction center (bRC) from Rhodobacter sphaeroides R26 embedded into a trehalose glass matrix is used as a model system. The bRC hosts the two native radical cofactor ions (primary electron donor) and (primary electron acceptor) as well as an artificial nitroxide spin label site-specifically attached to the surface of the H-protein domain. The three paramagnetic reporter groups have distinctly different local environments. They serve as local probes to detect water molecules via magnetic interactions (electron-nuclear hyperfine and quadrupole) with either deuterons or 17O nuclei. bRCs were equilibrated in an atmosphere of different relative humidities allowing us to control precisely the hydration levels of the protein. We show that by using oxygen-17 labeled water quantitative conclusions can be made in contrast to using D2O which suffers from proton-deuterium exchange processes in the protein. From the experiments we also conclude that dry trehalose operates as an anhydrobiotic protein stabilizer in line with the "anchorage hypothesis" of bio-protection. It predicts selective changes in the first solvation shell of the protein upon trehalose-matrix dehydration with subsequent changes in the hydrogen-bonding network. Changes in hydrogen-bonding patterns usually have an impact on the global function of a biological system.

7.
J Phys Chem Lett ; 7(23): 4871-4877, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27934049

RESUMO

Disaccharide glasses are increasingly used to immobilize proteins at room temperature for structural/functional studies and long-term preservation. To unravel the molecular basis of protein immobilization, we studied the effect of sugar/protein concentration ratios in trehalose or sucrose matrixes, in which the bacterial photosynthetic reaction center (RC) was embedded as a model protein. The structural, dynamical, and H-bonding characteristics of the sugar-protein systems were probed by high-field W-band EPR of a matrix-dissolved nitroxide radical. We discovered that RC immobilization and thermal stabilization, being independent of the protein concentration in trehalose, occur in sucrose only at sufficiently low sugar/protein ratios. EPR reveals that only under such conditions does sucrose form a microscopically homogeneous matrix that immobilizes, via H-bonds, the nitroxide probe. We conclude that the protein immobilization capability depends critically on the propensity of the glass-forming sugar to create intermolecular H-bond networks, thus establishing long-range, homogeneous connectivity within the matrix.


Assuntos
Proteínas/química , Sacarose/química , Açúcares/química , Trealose/química
8.
Biochim Biophys Acta ; 1857(11): 1796-1806, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27550309

RESUMO

The ubiquinol:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important membrane protein complex in photosynthetic and respiratory energy transduction. In bacteria such as Rhodobacter capsulatus it is constituted of three subunits: the iron-sulfur protein, cyt b and cyt c1, which form two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the pathways of bifurcated electron transfers emanating from QH2 oxidation are known, but the associated proton release routes are not well defined. In energy transducing complexes, Zn2+ binding amino acid residues often correlate with proton uptake or release pathways. Earlier, using combined EXAFS and structural studies, we identified Zn coordinating residues of mitochondrial and bacterial cyt bc1. In this work, using the genetically tractable bacterial cyt bc1, we substituted each of the proposed Zn binding residues with non-protonatable side chains. Among these mutants, only the His291Leu substitution destroyed almost completely the Qo site catalysis without perturbing significantly the redox properties of the cofactors or the assembly of the complex. In this mutant, which is unable to support photosynthetic growth, the bifurcated electron transfer reactions that result from QH2 oxidation at the Qo site, as well as the associated proton(s) release, were dramatically impaired. Based on these findings, on the putative role of His291 in liganding Zn, and on its solvent exposed and highly conserved position, we propose that His291 of cyt b is critical for proton release associated to QH2 oxidation at the Qo site of cyt bc1.


Assuntos
Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Histidina/metabolismo , Zinco/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Histidina/química , Histidina/genética , Oxirredução , Rhodobacter capsulatus/enzimologia , Rhodobacter capsulatus/metabolismo , Ubiquinona/metabolismo
10.
Biochim Biophys Acta ; 1848(11 Pt A): 2898-909, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26343161

RESUMO

Ionic liquids (ILs) are promising materials exploited as solvents and media in many innovative applications, some already used at the industrial scale. The chemical structure and physicochemical properties of ILs can differ significantly according to the specific applications for which they have been synthesized. As a consequence, their interaction with biological entities and toxicity can vary substantially. To select highly effective and minimally harmful ILs, these properties need to be investigated. Here we use the so called chromatophores--protein-phospholipid membrane vesicles obtained from the photosynthetic bacterium Rhodobacter sphaeroides--to assess the effects of imidazolinium and pyrrolidinium ILs, with chloride or dicyanamide as counter anions, on the ionic permeability of a native biological membrane. The extent and modalities by which these ILs affect the ionic conductivity can be studied in chromatophores by analyzing the electrochromic response of endogenous carotenoids, acting as an intramembrane voltmeter at the molecular level. We show that chromatophores represent an in vitro experimental model suitable to probe permeability changes induced in cell membranes by ILs differing in chemical nature, degree of oxygenation of the cationic moiety and counter anion.


Assuntos
Cromatóforos Bacterianos/metabolismo , Carotenoides/metabolismo , Líquidos Iônicos/química , Rhodobacter sphaeroides/metabolismo , Algoritmos , Cromatóforos Bacterianos/efeitos dos fármacos , Cloretos/química , Imidazolinas/química , Líquidos Iônicos/farmacologia , Cinética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxirredução , Permeabilidade/efeitos dos fármacos , Pirrolidinas/química , Rhodobacter sphaeroides/efeitos dos fármacos , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier
11.
J Phys Chem B ; 119(43): 13600-18, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26083980

RESUMO

Conformational protein dynamics is known to be hampered in amorphous matrixes upon dehydration, both in the absence and in the presence of glass forming disaccharides, like trehalose, resulting in enhanced protein thermal stability. To shed light on such matrix effects, we have compared the retardation of protein dynamics in photosynthetic bacterial reaction centers (RC) dehydrated at controlled relative humidity in the absence (RC films) or in the presence of trehalose (RC-trehalose glasses). Small scale RC dynamics, associated with the relaxation from the dark-adapted to the light-adapted conformation, have been probed up to the second time scale by analyzing the kinetics of electron transfer from the photoreduced quinone acceptor (QA(-)) to the photoxidized primary donor (P(+)) as a function of the duration of photoexcitation from 7 ns (laser pulse) to 20 s. A more severe inhibition of dynamics is found in RC-trehalose glasses than in RC films: only in the latter system does a complete relaxation to the light-adapted conformation occur even at extreme dehydration, although strongly retarded. To gain insight into the large scale RC dynamics up to the time scale of days, the kinetics of thermal denaturation have been studied at 44 °C by spectral analysis of the Qx and Qy bands of the RC bacteriochlorin cofactors, as a function of the sugar/protein molar ratio, m, varied between 0 and 10(4). Upon increasing m, denaturation is slowed progressively, and above m ∼ 500 the RC is stable at least for several days. The stronger retardation of RC relaxation and dynamics induced by trehalose is discussed in the light of a recent molecular dynamics simulation study performed in matrixes of the model protein lysozyme with and without trehalose. We suggest that the efficiency of trehalose in retarding RC dynamics and preventing thermal denaturation stems mainly from its propensity to form and stabilize extended networks of hydrogen bonds involving sugar, residual water, and surface residues of the RC complex and from its ability of reducing the free volume fraction of protein alone matrixes.


Assuntos
Muramidase/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Desnaturação Proteica , Rhodobacter sphaeroides/metabolismo , Temperatura , Trealose/farmacologia , Desidratação , Transporte de Elétrons , Cinética , Simulação de Dinâmica Molecular , Muramidase/química , Complexo de Proteínas do Centro de Reação Fotossintética/antagonistas & inibidores , Complexo de Proteínas do Centro de Reação Fotossintética/química , Conformação Proteica/efeitos dos fármacos , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Rhodobacter sphaeroides/química
12.
Photochem Photobiol Sci ; 14(2): 238-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25188921

RESUMO

The photosynthetic reaction center (RC) is a membrane pigment-protein complex that catalyzes the initial charge separation reactions of photosynthesis. Following photoexcitation, the RC undergoes conformational relaxations which stabilize the charge-separated state. Dehydration of the complex inhibits its conformational dynamics, providing a useful tool to gain insights into the relaxational processes. We analyzed the effects of dehydration on the electronic structure of the primary electron donor P, as probed by visible-NIR and light-induced FTIR difference spectroscopy, in RC films equilibrated at different relative humidities r. Previous FTIR and ENDOR spectroscopic studies revealed that P, an excitonically coupled dimer of bacteriochlorophylls, can be switched between two conformations, P866 and P850, which differ in the extent of delocalization of the unpaired electron between the two bacteriochlorophyll moieties (PL and PM) of the photo-oxidized radical P(+). We found that dehydration (at r = 11%) shifts the optical Qy band of P from 866 to 850-845 nm, a large part of the effect occurring already at r = 76%. Such a dehydration weakens light-induced difference FTIR marker bands, which probe the delocalization of charge distribution within the P(+) dimer (the electronic band of P(+) at 2700 cm(-1), and the associated phase-phonon vibrational modes at around 1300, 1480, and 1550 cm(-1)). From the analysis of the P(+) keto C[double bond, length as m-dash]O bands at 1703 and 1713-15 cm(-1), we inferred that dehydration induces a stronger localization of the unpaired electron on PL(+). The observed charge redistribution is discussed in relation to the dielectric relaxation of the photoexcited RC on a long (10(2) s) time scale.


Assuntos
Proteínas de Bactérias/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Água/química , Elétrons , Umidade , Fônons , Processos Fotoquímicos , Conformação Proteica , Rhodobacter sphaeroides , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Luz Próxima ao Infravermelho , Vibração
13.
Biochim Biophys Acta ; 1827(3): 328-39, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23103449

RESUMO

Following light-induced electron transfer between the primary donor (P) and quinone acceptor (Q(A)) the bacterial photosynthetic reaction center (RC) undergoes conformational relaxations which stabilize the primary charge separated state P(+)Q(A)(-). Dehydration of RCs from Rhodobacter sphaeroides hinders these conformational dynamics, leading to acceleration of P(+)Q(A)(-) recombination kinetics [Malferrari et al., J. Phys. Chem. B 115 (2011) 14732-14750]. To clarify the structural basis of the conformational relaxations and the involvement of bound water molecules, we analyzed light-induced P(+)Q(A)(-)/PQ(A) difference FTIR spectra of RC films at two hydration levels (relative humidity r=76% and r=11%). Dehydration reduced the amplitude of bands in the 3700-3550cm(-1) region, attributed to water molecules hydrogen bonded to the RC, previously proposed to stabilize the charge separation by dielectric screening [Iwata et al., Biochemistry 48 (2009) 1220-1229]. Other features of the FTIR difference spectrum were affected by partial depletion of the hydration shell (r=11%), including contributions from modes of P (9-keto groups), and from NH or OH stretching modes of amino acidic residues, absorbing in the 3550-3150cm(-1) range, a region so far not examined in detail for bacterial RCs. To probe in parallel the effects of dehydration on the RC conformational relaxations, we analyzed by optical absorption spectroscopy the kinetics of P(+)Q(A)(-) recombination following the same photoexcitation used in FTIR measurements (20s continuous illumination). The results suggest a correlation between the observed FTIR spectral changes and the conformational rearrangements which, in the hydrated system, strongly stabilize the P(+)Q(A)(-) charge separated state over the second time scale.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Luz , Conformação Proteica , Água/química
14.
J Pharm Sci ; 102(2): 649-59, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23212707

RESUMO

An increasing number of publications report on the efficacy of trehalose in preserving organisms, cells, and macromolecules from adverse environmental conditions such as extreme temperatures and dryness. Although the mechanism by which this disaccharide exerts its protection is still debated, the implementation of trehalose as stabilizer is becoming a praxis in several preparative protocols from the pharmaceutical industry. We tested the ability of trehalose in protecting R-Phycoerythrin (R-PE), a pigment-protein complex widely used as fluorescent marker, from thermal denaturation. Once embedded into a dried trehalose matrix, R-PE retains its optical absorption-emission characteristics even when exposed to 70°C for h or when subjected to freeze-drying. We subsequently examined the protection exerted by trehalose on freeze-dried antihuman CD8-RPE (CD8-RPE) conjugated antibodies. Flow cytometric analysis showed that colyophilized trehalose-CD8-RPE preparations can be exposed for 4 weeks at 45°C without significant loss of functionality. Remarkably, even following 4 weeks incubation at 70°C, the preparations are still able to specifically recognize CD8(+) lymphocyte populations. These results show that colyophilization with trehalose makes possible the preparation of antibody-based diagnostic kits which can withstand breaks in the "cold chain" distribution, particularly suited for use in less-developed countries of the tropical areas.


Assuntos
Antígenos CD8/química , Citometria de Fluxo/métodos , Temperatura Alta , Imunoconjugados/química , Ficoeritrina/química , Trealose/química , Anticorpos/química , Estabilidade de Medicamentos , Liofilização/métodos , Temperatura Alta/efeitos adversos , Humanos
15.
J Phys Chem B ; 115(49): 14732-50, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22017517

RESUMO

We report on the relationship between electron transfer, conformational dynamics, and hydration in photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides. The kinetics of electron transfer from the photoreduced quinone acceptor (Q(A)(-)) to the photo-oxidized primary donor (P(+)), a charge recombination process sensitive to the conformational dynamics of the RC, has been analyzed at room temperature in dehydrated RC-detergent films as a function of the residual water content under controlled relative humidity (r). The hydration level was evaluated by FTIR spectroscopy from the area of the combination band of water (5155 cm(-1)). Sorption isotherms fit the Hailwood and Horrobin model and indicate a significant contribution to hydration of the detergent belt surrounding the RC. Spectral analysis of the water combination and association (2130 cm(-1)) bands suggests strong rearrangements in the hydrogen-bonding organization upon depletion of the hydration shell of the complex. In parallel with these changes, following dehydration below a critical threshold (r approximately equal 40%), the kinetics of P(+)Q(A)(-) recombination become progressively faster and distributed in rate. When r is decreased from 40% to 10% the average rate constant (k) increases from 15 to 40 s(-1), mimicking the behavior of the hydrated system at cryogenic temperatures. We infer that extensive dehydration inhibits dramatically the relaxation from the dark- to the light-adapted conformation of the RC as well as interconversion among lower tier conformational substates. The RC dynamics probed by P(+)Q(A)(-) recombination appear therefore controlled by the thermal fluctuations of the hydration shell. At r < 10% an additional, much faster ((k) approximately equal 3000 s(-1)) kinetic phase of P(+)Q(A)(-) recombination is observed. We suggest such a fast recombination arises from removal of a pool of RC-bound water molecules which are essential to stabilize the primary charge-separated state at physiological conditions.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Solventes/química , Transporte de Elétrons , Ligação de Hidrogênio , Cinética , Rhodobacter sphaeroides/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica , Água/química
16.
Biochemistry ; 50(20): 4263-72, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21500804

RESUMO

The cytochrome (cyt) bc(1) complex (cyt bc(1)) plays a major role in the electrogenic extrusion of protons across the membrane responsible for the proton motive force to produce ATP. Proton-coupled electron transfer underlying the catalysis of cyt bc(1) is generally accepted, but the molecular basis of coupling and associated proton efflux pathway(s) remains unclear. Herein we studied Zn(2+)-induced inhibition of Rhodobacter capsulatus cyt bc(1) using enzyme kinetics, isothermal titration calorimetry (ITC), and electrochemically induced Fourier transform infrared (FTIR) difference spectroscopy with the purpose of understanding the Zn(2+) binding mechanism and its inhibitory effect on cyt bc(1) function. Analogous studies were conducted with a mutant of cyt b, E295, a residue previously proposed to bind Zn(2+) on the basis of extended X-ray absorption fine-structure spectroscopy. ITC analysis indicated that mutation of E295 to valine, a noncoordinating residue, results in a decrease in Zn(2+) binding affinity. The kinetic study showed that wild-type cyt bc(1) and its E295V mutant have similar levels of apparent K(m) values for decylbenzohydroquinone as a substrate (4.9 ± 0.2 and 3.1 ± 0.4 µM, respectively), whereas their K(I) values for Zn(2+) are 8.3 and 38.5 µM, respectively. The calorimetry-based K(D) values for the high-affinity site of cyt bc(1) are on the same order of magnitude as the K(I) values derived from the kinetic analysis. Furthermore, the FTIR signal of protonated acidic residues was perturbed in the presence of Zn(2+), whereas the E295V mutant exhibited no significant change in electrochemically induced FTIR difference spectra measured in the presence and absence of Zn(2+). Our overall results indicate that the proton-active E295 residue near the Q(o) site of cyt bc(1) can bind directly to Zn(2+), resulting in a decrease in the electron transferring activity without changing drastically the redox potentials of the cofactors of the enzyme. We conclude that E295 is involved in proton efflux coupled to electron transfer at the Q(o) site of cyt bc(1).


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/química , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/metabolismo , Prótons , Rhodobacter capsulatus/enzimologia , Zinco/farmacologia , Calorimetria , Domínio Catalítico , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/metabolismo
17.
J Phys Chem B ; 114(39): 12729-43, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20839819

RESUMO

The coupling between electron transfer (ET) and the conformational dynamics of the cofactor−protein complex in photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides in water/glycerol solutions or embedded in dehydrated poly(vinyl alcohol) (PVA) films or trehalose glasses is reported. Matrix effects were studied by time-resolved 95 GHz high-field electron paramagnetic resonance (EPR) spectroscopy at room (290 K) and low (150 K) temperature. ET from the photoreduced quinone acceptor (QA•−) to the photo-oxidized donor (P865•+) is strongly matrix-dependent at room temperature: In the trehalose glasses, the recombination kinetics of P865•+QA•−, probed by EPR and optical spectroscopies, is faster and broadly distributed as compared to that of RCs in solution, reflecting the inhibition of the RC relaxation from the dark- to the light-adapted conformational substate and the hindrance of substate interconversion. Similarly accelerated kinetics was observed also in PVA at a water-to-RC molar ratio 10-fold lower than in trehalose. Despite the matrix dependence of the ET kinetics, continuous-wave (cw) EPR and electron spin echo (ESE) analyses of the photogenerated P865•+ and QA•− radical ions and P865•+QA•− radical pairs do not reveal significant matrix effects, at either 290 or 150 K, indicating no change in the molecular radical-pair configuration of the P865•+ and QA•− cofactors. Furthermore, the field dependences of the transverse relaxation times T2 of QA•− essentially coincide in trehalose and PVA at 290 K. T2 is similar in these two matrixes and in the glycerol/water system at 150 K, implying that the librational dynamics of QA•− are also unaffected by the matrix. We infer that the relative geometry of the primary donor and acceptor, as well as the local dynamics and hydrogen bonding of QA in its binding pocket, are not involved in the stabilization of P865•+QA•−. We suggest that the RC relaxation occurs rather by changes throughout the protein/solvent system. The control of the RC dynamics and ET by the environment is discussed, particularly with respect to the extraordinary efficacy of trehalose matrixes in restricting the RC motional degrees of freedom at elevated temperatures.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Trealose/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Ligação de Hidrogênio , Cinética , Lasers , Simulação de Dinâmica Molecular , Conformação Proteica , Rhodobacter sphaeroides/enzimologia
18.
Biochim Biophys Acta ; 1797(4): 494-500, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20080075

RESUMO

Transhydrogenase couples hydride transfer between NADH and NADP(+) to proton translocation across a membrane. The binding of Zn(2+) to the enzyme was shown previously to inhibit steps associated with proton transfer. Using Zn K-edge X-ray absorption fine structure (XAFS), we report here on the local structure of Zn(2+) bound to Escherichia coli transhydrogenase. Experiments were performed on wild-type enzyme and a mutant in which betaHis91 was replaced by Lys (betaH91K). This well-conserved His residue, located in the membrane-spanning domain of the protein, has been suggested to function in proton transfer, and to act as a ligand of the inhibitory Zn(2+). The XAFS analysis has identified a Zn(2+)-binding cluster formed by one Cys, two His, and one Asp/Glu residue, arranged in a tetrahedral geometry. The structure of the site is consistent with the notion that Zn(2+) inhibits proton translocation by competing with H(+) binding to the His residues. The same cluster of residues with very similar bond lengths best fits the spectra of wild-type transhydrogenase and betaH91K. Evidently, betaHis91 is not directly involved in Zn(2+) binding. The locus of betaHis91 and that of the Zn-binding site, although both on (or close to) the proton-transfer pathway of transhydrogenase, are spatially separate.


Assuntos
Proteínas de Escherichia coli/química , Mutação , NADP Trans-Hidrogenases/química , Espectrometria por Raios X/métodos , Zinco/química , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sítios de Ligação/genética , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Modelos Moleculares , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Zinco/metabolismo
19.
J Synchrotron Radiat ; 17(1): 41-52, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20029110

RESUMO

In the present work a data analysis approach, based on XAFS data, is proposed for the identification of most probable binding motifs of unknown mononuclear zinc sites in metalloproteins. This approach combines multiple-scattering EXAFS analysis performed within the rigid-body refinement scheme, non-muffin-tin ab initio XANES simulations, average structural information on amino acids and metal binding clusters provided by the Protein Data Bank, and Debye-Waller factor calculations based on density functional theory. The efficiency of the method is tested by using three reference zinc proteins for which the local structure around the metal is already known from protein crystallography. To show the applicability of the present analysis to structures not deposited in the Protein Data Bank, the XAFS spectra of six mononuclear zinc binding sites present in diverse membrane proteins, for which we have previously proposed the coordinating amino acids by applying a similar approach, is also reported. By comparing the Zn K-edge XAFS features exhibited by these proteins with those pertaining to the reference structures, key spectral characteristics, related to specific binding motifs, are observed. These case studies exemplify the combined data analysis proposed and further support its validity.


Assuntos
Algoritmos , Biopolímeros/química , Metaloproteínas/química , Metais/química , Espectroscopia por Absorção de Raios X/métodos , Zinco/química , Motivos de Aminoácidos , Sítios de Ligação , Interpretação Estatística de Dados , Ligação Proteica
20.
J Phys Chem B ; 113(30): 10389-98, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19585969

RESUMO

The coupling between electron transfer and protein dynamics has been investigated in reaction centers (RCs) from the wild type (wt) and the carotenoid-less strain R26 of the photosynthetic bacterium Rhodobacter sphaeroides. Recombination kinetics between the primary photoreduced quinone acceptor (QA-) and photoxidized donor (P+) have been analyzed at room temperature in RCs incorporated into glassy trehalose matrices of different water/sugar ratios. As previously found in R26 RCs, also in the wt RC, upon matrix dehydration, P+QA- recombination accelerates and becomes broadly distributed, reflecting the inhibition of protein relaxation from the dark-adapted to the light-adapted conformation and the hindrance of interconversion between conformational substates. While in wet trehalose matrices (down to approximately one water per trehalose molecule) P+QA- recombination kinetics are essentially coincident in wt and R26 RCs, more extensive dehydration leads to two-times faster and more distributed kinetics in the carotenoid-containing RC, indicating a stronger inhibition of the internal protein dynamics in the wt RC. Coarse-grained Brownian dynamics simulations performed on the two RC structures reveal a markedly larger flexibility of the R26 RC, showing that a rigid core of residues, close to the quinone acceptors, is specifically softened in the absence of the carotenoid. These experimental and computational results concur to indicate that removal of the carotenoid molecule has long-range effects on protein dynamics and that the structural/dynamical coupling between the protein and the glassy matrix depends strongly upon the local mechanical properties of the protein interior. The data also suggest that the conformational change stabilizing P+QA- is localized around the QA binding pocket.


Assuntos
Carotenoides/metabolismo , Vidro/química , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Trealose/química , Benzoquinonas/química , Benzoquinonas/metabolismo , Cinética , Modelos Moleculares , Mutação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Conformação Proteica , Rhodobacter sphaeroides/enzimologia , Trealose/farmacologia , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...