Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1240281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560539

RESUMO

High-containment laboratories (HCLs) conduct critical research on infectious diseases, provide diagnostic services, and produce vaccines for the world's most dangerous pathogens, often called high-consequence pathogens (HCPs). The modernization of HCLs has led to an increasingly cyber-connected laboratory infrastructure. The unique cyberphysical elements of these laboratories and the critical data they generate pose cybersecurity concerns specific to these laboratories. Cyberbiosecurity, the discipline devoted to the study of cybersecurity risks in conjunction with biological risks, is a relatively new field for which few approaches have been developed to identify, assess, and mitigate cyber risks in biological research and diagnostic environments. This study provides a novel approach for cybersecurity risk assessment and identification of risk mitigation measures by applying an asset-impact analysis to the unique environment of HCLs. First, we identified the common cyber and cyberphysical systems in HCLs, summarizing the typical cyber-workflow. We then analyzed the potential adverse outcomes arising from a compromise of these cyber and cyberphysical systems, broadly categorizing potential consequences as relevant to scientific advancement, public health, worker safety, security, and the financial wellbeing of these laboratories. Finally, we discussed potential risk mitigation strategies, leaning heavily on the cybersecurity materials produced by the Center for Internet Security (CIS), including the CIS Controls®, that can serve as a guide for HCL operators to begin the process of implementing risk mitigation measures to reduce their cyberbiorisk and considering the integration of cyber risk management into existing biorisk management practices. This paper provides a discussion to raise awareness among laboratory decision-makers of these critical risks to safety and security within HCLs. Furthermore, this paper can serve as a guide for evaluating cyberbiorisks specific to a laboratory by identifying cyber-connected assets and the impacts associated with a compromise of those assets.

2.
Elife ; 72018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29560858

RESUMO

Non-malignant breast epithelial cells cultured in three-dimensional laminin-rich extracellular matrix (lrECM) form well organized, growth-arrested acini, whereas malignant cells form continuously growing disorganized structures. While the mechanical properties of the microenvironment have been shown to contribute to formation of tissue-specific architecture, how transient external force influences this behavior remains largely unexplored. Here, we show that brief transient compression applied to single malignant breast cells in lrECM stimulated them to form acinar-like structures, a phenomenon we term 'mechanical reversion.' This is analogous to previously described phenotypic 'reversion' using biochemical inhibitors of oncogenic pathways. Compression stimulated nitric oxide production by malignant cells. Inhibition of nitric oxide production blocked mechanical reversion. Compression also restored coherent rotation in malignant cells, a behavior that is essential for acinus formation. We propose that external forces applied to single malignant cells restore cell-lrECM engagement and signaling lost in malignancy, allowing them to reestablish normal-like tissue architecture.


Assuntos
Mama/metabolismo , Células Epiteliais/metabolismo , Óxido Nítrico/metabolismo , Estresse Mecânico , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Mama/citologia , Mama/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Laminina/metabolismo , Laminina/farmacologia , Microscopia Confocal , Transdução de Sinais/efeitos dos fármacos , Imagem com Lapso de Tempo/métodos
3.
F1000Res ; 6: 604, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620458

RESUMO

The preclinical research process is a cycle of idea generation, experimentation, and reporting of results. The biomedical research community relies on the reproducibility of published discoveries to create new lines of research and to translate research findings into therapeutic applications. Since 2012, when scientists from Amgen reported that they were able to reproduce only 6 of 53 "landmark" preclinical studies, the biomedical research community began discussing the scale of the reproducibility problem and developing initiatives to address critical challenges. Global Biological Standards Institute (GBSI) released the "Case for Standards" in 2013, one of the first comprehensive reports to address the rising concern of irreproducible biomedical research. Further attention was drawn to issues that limit scientific self-correction, including reporting and publication bias, underpowered studies, lack of open access to methods and data, and lack of clearly defined standards and guidelines in areas such as reagent validation. To evaluate the progress made towards reproducibility since 2013, GBSI identified and examined initiatives designed to advance quality and reproducibility. Through this process, we identified key roles for funders, journals, researchers and other stakeholders and recommended actions for future progress. This paper describes our findings and conclusions.

4.
PLoS One ; 9(8): e101955, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111489

RESUMO

Cell-matrix and cell-cell mechanosensing are important in many cellular processes, particularly for epithelial cells. A crucial question, which remains unexplored, is how the mechanical microenvironment is altered as a result of changes to multicellular tissue structure during cancer progression. In this study, we investigated the influence of the multicellular tissue architecture on mechanical properties of the epithelial component of the mammary acinus. Using creep compression tests on multicellular breast epithelial structures, we found that pre-malignant acini with no lumen (MCF10AT) were significantly stiffer than normal hollow acini (MCF10A) by 60%. This difference depended on structural changes in the pre-malignant acini, as neither single cells nor normal multicellular acini tested before lumen formation exhibited these differences. To understand these differences, we simulated the deformation of the acini with different multicellular architectures and calculated their mechanical properties; our results suggest that lumen filling alone can explain the experimentally observed stiffness increase. We also simulated a single contracting cell in different multicellular architectures and found that lumen filling led to a 20% increase in the "perceived stiffness" of a single contracting cell independent of any changes to matrix mechanics. Our results suggest that lumen filling in carcinogenesis alters the mechanical microenvironment in multicellular epithelial structures, a phenotype that may cause downstream disruptions to mechanosensing.


Assuntos
Neoplasias da Mama/patologia , Mama/citologia , Mama/patologia , Células Epiteliais/citologia , Células Epiteliais/patologia , Fenômenos Mecânicos , Células Acinares/citologia , Células Acinares/patologia , Fenômenos Biomecânicos , Carcinogênese , Linhagem Celular Tumoral , Elasticidade , Humanos , Modelos Biológicos , Transdução de Sinais , Microambiente Tumoral
5.
Curr Opin Cell Biol ; 25(5): 558-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23830123

RESUMO

A cell embedded in a multicellular organism will experience a wide range of mechanical stimuli over the course of its life. Fluid flows and neighboring cells actively exert stresses on the cell, while the cell's environment presents a set of passive mechanical properties that constrain its physical behavior. Cells respond to these varied mechanical cues through biological responses that regulate activities such as differentiation, morphogenesis, and proliferation, as well as material responses involving compression, stretching, and relaxation. Here, we break down recent studies of mechanotransduction on the basis of the input mechanical stimuli acting upon the cell and the output response of the cell. This framework provides a useful starting point for identifying overlaps in molecular players and sensing modalities, and it highlights how different timescales involved in biological and material responses to mechanical inputs could serve as a means for filtering important mechanical signals from noise.


Assuntos
Fenômenos Fisiológicos Celulares , Mecanotransdução Celular , Animais , Células/química , Células/metabolismo , Matriz Extracelular/metabolismo
6.
Curr Biol ; 23(8): 703-9, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23562267

RESUMO

For decades, the work of cell and developmental biologists has demonstrated the striking ability of the mesenchyme and the stroma to instruct epithelial form and function in the mammary gland, but the role of extracellular matrix (ECM) molecules in mammary pattern specification has not been elucidated. Here, we show that stromal collagen I (Col-I) fibers in the mammary fat pad are axially oriented prior to branching morphogenesis. Upon puberty, the branching epithelium orients along these fibers, thereby adopting a similar axial bias. To establish a causal relationship from Col-I fiber to epithelial orientation, we embedded mammary organoids within axially oriented Col-I fiber gels and observed dramatic epithelial co-orientation. Whereas a constitutively active form of Rac1, a molecule implicated in cell motility, prevented a directional epithelial response to Col-I fiber orientation, inhibition of the RhoA/Rho-associated kinase (ROCK) pathway did not. However, time-lapse studies revealed that, within randomly oriented Col-I matrices, the epithelium axially aligns fibers at branch sites via RhoA/ROCK-mediated contractions. Our data provide an explanation for how the stromal ECM encodes architectural cues for branch orientation as well as how the branching epithelium interprets and reinforces these cues through distinct signaling processes.


Assuntos
Colágeno Tipo I/metabolismo , Glândulas Mamárias Animais/metabolismo , Neuropeptídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Feminino , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Maturidade Sexual , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...