Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Genes (Basel) ; 14(6)2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372484

RESUMO

Focal amplifications (FAs) are crucial in cancer research due to their significant diagnostic, prognostic, and therapeutic implications. FAs manifest in various forms, such as episomes, double minute chromosomes, and homogeneously staining regions, arising through different mechanisms and mainly contributing to cancer cell heterogeneity, the leading cause of drug resistance in therapy. Numerous wet-lab, mainly FISH, PCR-based assays, next-generation sequencing, and bioinformatics approaches have been set up to detect FAs, unravel the internal structure of amplicons, assess their chromatin compaction status, and investigate the transcriptional landscape associated with their occurrence in cancer cells. Most of them are tailored for tumor samples, even at the single-cell level. Conversely, very limited approaches have been set up to detect FAs in liquid biopsies. This evidence suggests the need to improve these non-invasive investigations for early tumor detection, monitoring disease progression, and evaluating treatment response. Despite the potential therapeutic implications of FAs, such as, for example, the use of HER2-specific compounds for patients with ERBB2 amplification, challenges remain, including developing selective and effective FA-targeting agents and understanding the molecular mechanisms underlying FA maintenance and replication. This review details a state-of-the-art of FA investigation, with a particular focus on liquid biopsies and single-cell approaches in tumor samples, emphasizing their potential to revolutionize the future diagnosis, prognosis, and treatment of cancer patients.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Biópsia Líquida
2.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902237

RESUMO

The lung is an accomplished organ for gas exchanges and directly faces the external environment, consequently exposing its large epithelial surface. It is also the putative determinant organ for inducing potent immune responses, holding both innate and adaptive immune cells. The maintenance of lung homeostasis requires a crucial balance between inflammation and anti-inflammation factors, and perturbations of this stability are frequently associated with progressive and fatal respiratory diseases. Several data demonstrate the involvement of the insulin-like growth factor (IGF) system and their binding proteins (IGFBPs) in pulmonary growth, as they are specifically expressed in different lung compartments. As we will discuss extensively in the text, IGFs and IGFBPs are implicated in normal pulmonary development but also in the pathogenesis of various airway diseases and lung tumors. Among the known IGFBPs, IGFBP-6 shows an emerging role as a mediator of airway inflammation and tumor-suppressing activity in different lung tumors. In this review, we assess the current state of IGFBP-6's multiple roles in respiratory diseases, focusing on its function in the inflammation and fibrosis in respiratory tissues, together with its role in controlling different types of lung cancer.


Assuntos
Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina , Neoplasias Pulmonares , Fibrose Pulmonar , Humanos , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia
3.
Genes Chromosomes Cancer ; 62(7): 377-391, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36562080

RESUMO

Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Pulmonares/genética , Proliferação de Células/genética , Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/genética
4.
Oncol Lett ; 23(6): 185, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35527787

RESUMO

Insulin-like growth factor binding protein 6 (IGFBP6) is a secreted protein with a controversial role in human malignancies, being downregulated in most types of human cancer, but upregulated in selected tumors. Ovarian cancer (OC) is a human malignancy characterized by IGFBP6 downregulation; however, the significance of its low expression during ovarian carcinogenesis is still poorly understood. In the present study, IGFBP6 expression and activation of its associated signaling pathway were evaluated in two matched OC cell lines derived from a high-grade serous OC before and after platinum resistance (PEA1 and PEA2 cells, respectively). A whole genome gene expression analysis was comparatively performed in both cell lines upon IGFBP6 stimulation using Illumina technology. IGFBP6 gene expression data from human OC cases were obtained from public datasets. Gene expression data from public datasets confirmed the downregulation of IGFBP6 in primary and metastatic OC tissues compared with in normal ovarian tissues. The comparative analysis of platinum-sensitive (PEA1) and platinum-resistant (PEA2) cell lines showed quantitative and qualitative differences in the activation of IGFBP6 signaling. Notably, IGFBP6 enhanced ERK1/2 phosphorylation only in PEA1 cells, and induced more evident and significant gene expression reprogramming in PEA1 cells compared with in PEA2 cells. Furthermore, the analysis of selected genes modulated by IGFBP6 (i.e., FOS, JUN, TNF, IL6, IL8 and EGR1) exhibited an inverse regulation in PEA1 versus PEA2 cells. In addition, selected hallmarks (TNFA_signaling_via_NFKB, TGF_beta_signaling, P53_pathway) and IL-6 signaling were positively regulated in PEA1 cells, whereas they were inhibited in PEA2 cells in response to IGFBP6. These data suggested that dysregulation of IGFBP6 signaling may serve a role in the progression of OC, and is likely associated with the development of platinum resistance.

5.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457175

RESUMO

Insulin-like growth factors binding protein-6 (IGFBP-6) is involved in a relevant number of cellular activities and represents an important factor in the immune response, particularly in human dendritic cells (DCs). Over the past several years, significant insights into the IGF-independent effects of IGFBP-6 were discovered, such as the induction of chemotaxis, capacity to increase oxidative burst and neutrophils degranulation, ability to induce metabolic changes in DCs, and, more recently, the regulation of the Sonic Hedgehog (SHH) signaling pathway during fibrosis. IGFBP-6 has been implicated in different human diseases, and it plays a rather controversial role in the biology of tumors. Notably, well established relationships between immunity, stroma activity, and fibrosis are prognostic and predictive of response to cancer immunotherapy. This review aims at describing the current understanding of mechanisms that link IGFBP-6 and fibrosis development and at highlighting the multiple roles of IGFBP-6 to provide an insight into evolutionarily conserved mechanisms that can be relevant for inflammation, tumor immunity, and immunological diseases.


Assuntos
Proteínas Hedgehog , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina , Quimiotaxia , Fibrose , Proteínas Hedgehog/metabolismo , Humanos , Inflamação , Fator de Crescimento Insulin-Like I/metabolismo
6.
Aging (Albany NY) ; 13(23): 25055-25071, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905501

RESUMO

Primary myelofibrosis is a Ph-negative chronic myeloproliferative neoplasm characterized by bone marrow fibrosis and associated with the involvement of several pathways, in addition to bone marrow microenvironment alterations, mostly driven by the activation of the cytokine receptor/JAK2 pathway. Identification of driver mutations has led to the development of targeted therapy for myelofibrosis, contributing to reducing inflammation, although this currently does not translate into bone marrow fibrosis remission. Therefore, understanding the clear molecular cut underlying this pathology is now necessary to improve the clinical outcome of patients. The present study aims to investigate the involvement of IGFBP-6/sonic hedgehog /Toll-like receptor 4 axis in the microenvironment alterations of primary myelofibrosis. We observed a significant increase in IGFBP-6 expression levels in primary myelofibrosis patients, coupled with a reduction to near-normal levels in primary myelofibrosis patients with JAK2V617F mutation. We also found that both IGFBP-6 and purmorphamine, a SHH activator, were able to induce mesenchymal stromal cells differentiation with an up-regulation of cancer-associated fibroblasts markers. Furthermore, TLR4 signaling was also activated after IGFBP-6 and purmorphamine exposure and reverted by cyclopamine exposure, an inhibitor of the SHH pathway, confirming that SHH is involved in TLR4 activation and microenvironment alterations. In conclusion, our results suggest that the IGFBP-6/SHH/TLR4 axis is implicated in alterations of the primary myelofibrosis microenvironment and that IGFBP-6 may play a central role in activating SHH pathway during the fibrotic process.


Assuntos
Medula Óssea/metabolismo , Proteínas Hedgehog/metabolismo , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Mielofibrose Primária/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Western Blotting , Medula Óssea/patologia , Estudos de Casos e Controles , Diferenciação Celular , Citocinas/metabolismo , Conjuntos de Dados como Assunto , Humanos , Mielofibrose Primária/etiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
7.
Cells ; 10(2)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562444

RESUMO

Pyruvate dehydrogenase kinase 1 (PDK1) blockade triggers are well characterized in vitro metabolic alterations in cancer cells, including reduced glycolysis and increased glucose oxidation. Here, by gene expression profiling and digital pathology-mediated quantification of in situ markers in tumors, we investigated effects of PDK1 silencing on growth, angiogenesis and metabolic features of tumor xenografts formed by highly glycolytic OC316 and OVCAR3 ovarian cancer cells. Notably, at variance with the moderate antiproliferative effects observed in vitro, we found a dramatic negative impact of PDK1 silencing on tumor growth. These findings were associated with reduced angiogenesis and increased necrosis in the OC316 and OVCAR3 tumor models, respectively. Analysis of viable tumor areas uncovered increased proliferation as well as increased apoptosis in PDK1-silenced OVCAR3 tumors. Moreover, RNA profiling disclosed increased glucose catabolic pathways-comprising both oxidative phosphorylation and glycolysis-in PDK1-silenced OVCAR3 tumors, in line with the high mitotic activity detected in the viable rim of these tumors. Altogether, our findings add new evidence in support of a link between tumor metabolism and angiogenesis and remark on the importance of investigating net effects of modulations of metabolic pathways in the context of the tumor microenvironment.


Assuntos
Neoplasias Ovarianas/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Glicólise , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neovascularização Patológica
9.
Cancer Lett ; 473: 98-106, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31904480

RESUMO

The faithful inheritance of chromosomes is essential for the propagation of organisms. In eukaryotes, central to this process is the mitotic spindle. Recently, we have identified TRIM8 as a gene aberrantly expressed in gliomas whose expression reduces the clonogenic potential in the patients' glioma cells. TRIM8 encodes an E3 ubiquitin ligase involved in various pathological processes, including hypertrophy, antiviral defense, encephalopathy, and cancer development. To gain insights into the TRIM8 functions, we characterized the TRIM8 interactome in primary mouse embryonic neural stem cells using proteomics. We found that TRIM8 interacts with KIFC1, and KIF11/Eg5, two master regulators of mitotic spindle assembly and cytoskeleton reorganization. By exploring the TRIM8 role in the mitotic spindle machinery, we showed that TRIM8 localizes at the mitotic spindle during mitosis and plays a role in centrosome separation at the beginning of mitosis with a subsequent delay of the mitotic progression and impact on chromosomal stability.


Assuntos
Proteínas de Transporte/metabolismo , Instabilidade Cromossômica , Cinesinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fuso Acromático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , beta Carioferinas/metabolismo , Aneuploidia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Embrião de Mamíferos , Fibroblastos , Células HEK293 , Humanos , Camundongos , Micronúcleos com Defeito Cromossômico , Mitose , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais , Cultura Primária de Células , Prometáfase/genética , Ligação Proteica/genética , Proteômica
10.
Genet Med ; 22(5): 867-877, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31949313

RESUMO

PURPOSE: To investigate if specific exon 38 or 39 KMT2D missense variants (MVs) cause a condition distinct from Kabuki syndrome type 1 (KS1). METHODS: Multiple individuals, with MVs in exons 38 or 39 of KMT2D that encode a highly conserved region of 54 amino acids flanked by Val3527 and Lys3583, were identified and phenotyped. Functional tests were performed to study their pathogenicity and understand the disease mechanism. RESULTS: The consistent clinical features of the affected individuals, from seven unrelated families, included choanal atresia, athelia or hypoplastic nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies, hearing loss, external ear malformations, and thyroid abnormalities. None of the individuals had intellectual disability. The frequency of clinical features, objective software-based facial analysis metrics, and genome-wide peripheral blood DNA methylation patterns in these patients were significantly different from that of KS1. Circular dichroism spectroscopy indicated that these MVs perturb KMT2D secondary structure through an increased disordered to ɑ-helical transition. CONCLUSION: KMT2D MVs located in a specific region spanning exons 38 and 39 and affecting highly conserved residues cause a novel multiple malformations syndrome distinct from KS1. Unlike KMT2D haploinsufficiency in KS1, these MVs likely result in disease through a dominant negative mechanism.


Assuntos
Anormalidades Múltiplas , Doenças Hematológicas , Doenças Vestibulares , Anormalidades Múltiplas/genética , Face/anormalidades , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/genética , Humanos , Mutação , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/genética
11.
Cells ; 8(5)2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137886

RESUMO

The cell cycle is a series of events by which cellular components are accurately segregated into daughter cells, principally controlled by the oscillating activities of cyclin-dependent kinases (CDKs) and their co-activators. In eukaryotes, DNA replication is confined to a discrete synthesis phase while chromosome segregation occurs during mitosis. During mitosis, the chromosomes are pulled into each of the two daughter cells by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units tie chromosomes to the microtubules, send signals to the cells when the attachment is completed and the division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. Protein ubiquitination is a post-translational modification that plays a central role in cellular homeostasis. E3 ubiquitin ligases mediate the transfer of ubiquitin to substrate proteins determining their fate. One of the largest subfamilies of E3 ubiquitin ligases is the family of the tripartite motif (TRIM) proteins, whose dysregulation is associated with a variety of cellular processes and directly involved in human diseases and cancer. In this review we summarize the current knowledge and emerging concepts about TRIMs and their contribution to the correct regulation of cell cycle, describing how TRIMs control the cell cycle transition phases and their involvement in the different functional units of the mitotic process, along with implications in cancer progression.


Assuntos
Mitose/fisiologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Autofagia , Pontos de Checagem do Ciclo Celular , Centrossomo/metabolismo , Segregação de Cromossomos , Expressão Gênica , Humanos , Cinetocoros/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Polos do Fuso/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
12.
Biochim Biophys Acta Gen Subj ; 1863(2): 491-501, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528352

RESUMO

BACKGROUND: We recently reported TRIM8, encoding an E3 ubiquitin ligase, as a gene aberrantly expressed in glioblastoma whose expression suppresses cell growth and induces a significant reduction of clonogenic potential in glioblastoma cell lines. METHODS: we provided novel insights on TRIM8 functions by profiling the transcriptome of TRIM8-expressing primary mouse embryonal neural stem cells by RNA-sequencing and bioinformatic analysis. Functional analysis including luciferase assay, western blot, PCR arrays, Real time quantitative PCR were performed to validate the transcriptomic data. RESULTS: Our study identified enriched pathways related to the neurotransmission and to the central nervous system (CNS) functions, including axonal guidance, GABA receptor, Ephrin B, synaptic long-term potentiation/depression, and glutamate receptor signalling pathways. Finally, we provided additional evidence about the existence of a functional interactive crosstalk between TRIM8 and STAT3. CONCLUSIONS: Our results substantiate the role of TRIM8 in the brain functions through the dysregulation of genes involved in different CNS-related pathways, including JAK-STAT. GENERAL SIGNIFICANCE: This study provides novel insights on the physiological TRIM8 function by profiling for the first time the primary Neural Stem Cell over-expressing TRIM8 by using RNA-Sequencing methodology.


Assuntos
Proteínas de Transporte/metabolismo , Glioma/genética , Glioma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Transcriptoma , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Glioma/patologia , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Fator de Transcrição STAT3/metabolismo , Ubiquitina-Proteína Ligases
13.
Sci Rep ; 6: 32474, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581768

RESUMO

To orchestrate the genomic response to cellular stress signals, p53 recognizes and binds to DNA containing specific and well-characterized p53-responsive elements (REs). Differences in RE sequences can strongly affect the p53 transactivation capacity and occur even between closely related species. Therefore, the identification and characterization of a species-specific p53 Binding sistes (BS) consensus sequence and of the associated target genes may help to provide new insights into the evolution of the p53 regulatory networks across different species. Although p53 functions were studied in a wide range of species, little is known about the p53-mediated transcriptional signature in Danio rerio. Here, we designed and biochemically validated a computational approach to identify novel p53 target genes in Danio rerio genome. Screening all the Danio rerio genome by pattern-matching-based analysis, we found p53 RE-like patterns proximal to 979 annotated Danio rerio genes. Prioritization analysis identified a subset of 134 candidate pattern-related genes, 31 of which have been investigated in further biochemical assays. Our study identified runx1, axin1, traf4a, hspa8, col4a5, necab2, and dnajc9 genes as novel direct p53 targets and 12 additional p53-controlled genes in Danio rerio genome. The proposed combinatorial approach resulted to be highly sensitive and robust for identifying new p53 target genes also in additional animal species.


Assuntos
Genoma , Elementos de Resposta , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Peixe-Zebra/genética , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Alinhamento de Sequência , Transdução de Sinais , Fator 4 Associado a Receptor de TNF/genética , Fator 4 Associado a Receptor de TNF/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...