Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887984

RESUMO

Six different TiO2/CNT nanocomposite-coated polyvinylidene-fluoride (PVDF) microfilter membranes (including -OH or/and -COOH functionalized CNTs) were evaluated in terms of their performance in filtering oil-in-water emulsions. In the early stages of filtration, until reaching a volume reduction ratio (VRR) of ~1.5, the membranes coated with functionalized CNT-containing composites provided significantly higher fluxes than the non-functionalized ones, proving the beneficial effect of the surface modifications of the CNTs. Additionally, until the end of the filtration experiments (VRR = 5), notable flux enhancements were achieved with both TiO2 (~50%) and TiO2/CNT-coated membranes (up to ~300%), compared to the uncoated membrane. The irreversible filtration resistances of the membranes indicated that both the hydrophilicity and surface charge (zeta potential) played a crucial role in membrane fouling. However, a sharp and significant flux decrease (~90% flux reduction ratio) was observed for all membranes until reaching a VRR of 1.1-1.8, which could be attributed to the chemical composition of the oil. Gas chromatography measurements revealed a lack of hydrocarbon derivatives with polar molecular fractions (which can act as natural emulsifiers), resulting in significant coalescent ability (and less stable emulsion). Therefore, this led to a more compact cake layer formation on the surface of the membranes (compared to a previous study). It was also demonstrated that all membranes had excellent purification efficiency (97-99.8%) regarding the turbidity, but the effectiveness of the chemical oxygen demand reduction was slightly lower, ranging from 93.7% to 98%.

2.
Membranes (Basel) ; 13(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37505022

RESUMO

Membrane separation processes are promising methods for wastewater treatment. Membrane fouling limits their wider use; however, this may be mitigated using photocatalytic composite materials for membrane preparation. This study aimed to investigate photocatalytic polyvinylidene fluoride (PVDF)-based nanocomposite membranes for treating model dairy wastewater containing bovine serum albumin (BSA). Membranes were fabricated via physical coating (with TiO2, and/or carbon nanotubes, and/or BiVO4) and blending (with TiO2). Another objective of this study was to compare membranes of identical compositions fabricated using different techniques, and to examine how various TiO2 concentrations affect the antifouling and cleaning performances of the blended membranes. Filtration experiments were performed using a dead-end cell. Filtration resistances, BSA rejection, and photocatalytic cleanability (characterized by flux recovery ratio (FRR)) were measured. The surface characteristics (SEM, EDX), roughness (measured by atomic force microscopy, AFM), wettability (contact angle measurements), and zeta potential of the membranes were also examined. Coated PVDF membranes showed higher hydrophilicity than the pristine PVDF membrane, as evidenced by a decreased contact angle, but the higher hydrophilicity did not result in higher fluxes, unlike the case of blended membranes. The increased surface roughness resulted in increased reversible fouling, but decreased BSA retention. Furthermore, the TiO2-coated membranes had a better flux recovery ratio (FRR, 97%) than the TiO2-blended membranes (35%). However, the TiO2-coated membrane had larger total filtration resistances and a lower water flux than the commercial pristine PVDF membrane and TiO2-blended membrane, which may be due to pore blockage or an additional coating layer formed by the nanoparticles. The BSA rejection of the TiO2-coated membrane was lower than that of the commercial pristine PVDF membrane. In contrast, the TiO2-blended membranes showed lower resistance than the pristine PVDF membrane, and exhibited better antifouling performance, superior flux, and comparable BSA rejection. Increasing the TiO2 content of the TiO2-blended membranes (from 1 to 2.5%) resulted in increased antifouling and comparable BSA rejection (more than 95%). However, the effect of TiO2 concentration on flux recovery was negligible.

3.
Membranes (Basel) ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837714

RESUMO

Membrane filtration is an effective technique for separating micro- and nano-sized oil droplets from harmful oil-contaminated waters produced by numerous industrial activities. However, significant flux reduction discourages the extensive application of this technology; therefore, developing antifouling membranes is necessary. For this purpose, various titanium dioxide/carbon nanotube (TiO2/CNT) nanocomposites (containing 1, 2, and 5 wt.% multi-walled CNTs) were used for the modification of polyvinylidene fluoride (PVDF) ultrafilter (250 kDa) membrane surfaces. The effects of surface modifications were compared in relation to the flux, the filtration resistance, the flux recovery ratio, and the purification efficiency. TiO2/CNT2% composite modification reduced both irreversible and total filtration resistances the most during the filtration of 100 ppm oil emulsions. The fluxes were approximately 4-7 times higher compared to the unmodified PVDF membrane, depending on the used transmembrane pressure (510, 900, and 1340 L/m2h fluxes were measured at 0.1, 0.2, and 0.3 MPa pressures, respectively). Moreover, the flux recovery ratio (up to 68%) and the purification efficiency (95.1-99.8%) were also significantly higher because of the surface modification, and the beneficial effects were more dominant at higher transmembrane pressures. TiO2/CNT2% nanocomposites are promising to be applied to modify membranes used for oil-water separation and achieve outstanding flux, cleanability, and purification efficiency.

4.
Chemosphere ; 307(Pt 1): 135589, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35803379

RESUMO

Enhancing the performance of polymeric membranes by nanomaterials has become of great interest in the field of membrane technology. The present work aimed to fabricate polyvinylidene fluoride (PVDF)-hybrid nanocomposite membranes and modify them with TiO2 and/or BiVO4 nanoparticles and/or carbon nanotubes (CNTs) in various ratios. Their photocatalytic performance under visible light was also investigated. All modified PVDF membranes exhibited higher hydrophilicity (lower contact angle of water droplets) than that of the neat membrane used as a reference. The membranes were characterized by using bovine serum albumin (BSA) as model dairy wastewater. The hybrid membranes had better antifouling properties as they had lower irreversible filtration resistance than that of the neat membrane. Hybrid PVDF membranes containing TiO2/CNT/BiVO4 showed the highest flux and lowest irreversible resistance during the filtration of the BSA solution. PVDF-TiO2/BiVO4 had the highest flux recovery ratio under visible light (70% for the PVDF mixed with 0.5% TiO2 and 0.5% BiVO4). The hydrophilicity of membrane surfaces increased with the incorporation of nanoparticles, preventing BSA to bind to the surface. This resulted in a slight decrease in BSA and chemical oxygen demand rejections, which were still above 97% in all cases.


Assuntos
Nanocompostos , Nanotubos de Carbono , Purificação da Água , Polímeros de Fluorcarboneto , Luz , Membranas Artificiais , Polivinil , Soroalbumina Bovina/química , Titânio , Ultrafiltração , Águas Residuárias , Água
5.
Chemosphere ; 304: 135286, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35690168

RESUMO

Pirimicarb as a pesticide is used to control the aphids in the agriculture field; however, it affects the groundwater ecosystem by leaching through the soil profile. The post-synthetic amine and BWO modified MIL-100 (Fe) nanofillers were synthesized. The photocatalytic property of amine-functionalized and BWO@MIL-100(Fe) nanofillers was confirmed by the lesser bandgap energy than the unmodified MIL-100 (Fe) nanofiller. Herein, we constructed a nanofillers grafted PVDF membrane via in-situ polymerization technique for the pirimicarb reduction and photodegradation. Furthermore, the nanofiller's grafted membranes were characterized by FESEM, XRD, FTIR, and contact angle analysis. The carboxylic acid peak was observed on the FTIR which demonstrated the PAA grafted on the membrane surface and similar crystalline peaks evident that the nanofillers were grafted on the membrane surface. Furthermore, surface morphology studies have exhibited the dispersion of nanofillers and enhanced microvoids in the cross-section of the membrane. The decrease in the water contact angle of the membrane depicted the improved antifouling properties and surface energy. The nanofiller's grafted membranes have shown higher hydrophilicity correlated well with the enhanced pure water flux in the order M4 > M5 > M2 > M3 > M6 > M7 compared to the neat membrane (M1). In BWO@MIL-100(Fe) membrane has shown a higher permeate flux (25.99 L m-2.h-1) than the neat PVDF membrane. The BWO@MIL-100(Fe) grafted PVDF membrane has also shown excellent pirimicarb photodegradation of 81% at pH 5. The proposed MIL-100 (Fe) and bismuth tungsten nanocomposite will pave the way for the different MOF-based photocatalytic materials for membrane-based pesticide degradation.


Assuntos
Bismuto , Praguicidas , Aminas , Ecossistema , Polímeros de Fluorcarboneto , Fotólise , Polimerização , Polivinil , Compostos de Tungstênio , Água
6.
J Food Sci Technol ; 58(11): 4429-4436, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34538926

RESUMO

Membrane-based methods of filtering are becoming increasingly popular in the food industry, but membrane fouling significantly affects filtration performance, making the characterisation of fouling mechanisms critical. This study examined the applicability of three mathematical models. The resistance-in-series model divides the total resistance into membrane resistance, reversible resistance and irreversible resistance. The Hermia models distinguish four basic blocking mechanisms, namely complete blocking, standard blocking, intermediate blocking and cake filtration. The Makardij model analyses the flux-reducing or -enhancing effects. In the experiments, different models were investigated and compared. The feed solution was two milk substitute drinks (soy and oat) that were ultrafiltered under different operating parameters (transmembrane pressures: 0.05-0.1 MPa, stirring rate: 100-400 min-1). By fitting the data to the models, the most characteristic blocking mechanism and the rate constant that most influenced flux could be determined.

7.
Chemosphere ; 281: 130891, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34049085

RESUMO

Membrane-based separation is an area of extensive research in wastewater treatment, which includes the control of pollution and reuse of water. The fabrication and modification membranes for prevention and reduction of pollution to provide quality water with fouling-free membranes through the wastewater treatment are the progressive approaches in the industries. Several research works have been extensively working on modification and fabrication polymer membranes with integration of advanced oxidation process (AOP) to overcome the membrane fouling. This review describes the modification of membranes with various nanomaterials such as inorganic and modified carbon which can be used for pollution control and enhance the anti-fouling properties of ultrafiltration membranes. The effects on nanomaterials loading percentage, nanomaterials interaction with the polymers and rejection performances of the surface tuned membrane are elaborated. Secondly, the fouled membrane chemical cleaning process and NaOCl adverse effect on polymer structure are critically investigated. Moreover, state-of-art in the photocatalytic self-cleaning process are reviewed in this manuscript, and future perspectives on fouling mitigation based on AOP integrated membrane technology have also discussed.


Assuntos
Poluentes Ambientais , Nanoestruturas , Purificação da Água , Membranas Artificiais , Ultrafiltração
8.
Polymers (Basel) ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35012135

RESUMO

Non-solvent induced phase-inversion is one of the most used methods to fabricate membranes. However, there are only a few studies supported by statistical analysis on how the different fabrication conditions affect the formation and performance of membranes. In this paper, a central composite design was employed to analyze how different fabrication conditions affect the pure water flux, pore size, and photocatalytic activity of polyvinylidene fluoride (PVDF) membranes. Polyvinylpyrrolidone (PVP) was used to form pores, and titanium dioxide (TiO2) to ensure the photocatalytic activity of the membranes. The studied bath temperatures (15 to 25 °C) and evaporation times (0 to 60 s) did not significantly affect the pore size and pure water flux of the membranes. The concentration of PVDF (12.5 to 17.5%) affected the viscosity, formation capability, and pore sizes. PVDF at high concentrations resulted in membranes with small pore sizes. PVP affected the pore size and should be used to a limited extent to avoid possible hole formation. TiO2 contents were responsible for the decolorization of a methyl orange solution (10-5 M) up to 90% over the period studied (30 h). A higher content of TiO2 did not increase the decolorization rate. Acidic conditions increased the photocatalytic activity of the TiO2-membranes.

9.
Molecules ; 25(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092291

RESUMO

In the present study, additive-free, pH-driven, hydrothermal crystallization was used to obtain shape-tailored monoclinic BiVO4 photocatalysts. The as-prepared BiVO4 products were systematically characterized, uncovering their crystallographic, morphologic and optical properties, while their applicability was verified in the visible light-driven photodegradation of oxalic acid and rhodamine B. Monoclinic clinobisvanite was obtained in most cases, with their band gap values located between 2.1 and 2.4 eV. The morphology varied from large, aggregated crystals, individual microcrystals to hierarchical microstructures. It was found that the degradation efficiency values obtained in the case of oxalic acid were directly related to the presence of (040) crystallographic plane, while the degradation of rhodamine B was partially independent by the presence of this structural feature. The importance of (040) crystallographic plane was also demonstrated via the reduction of Cu2+ to Cu, by analyzing the Raman spectra of the Cu containing samples, the mean primary crystallite size of Cu and Cu content. Furthermore, the presence of (040) crystallographic plane was directly proportional with the hydrodynamic properties of the powders as well.


Assuntos
Bismuto/química , Fotólise/efeitos da radiação , Semicondutores , Vanadatos/química , Catálise/efeitos da radiação , Cristalização , Luz , Vanadatos/síntese química , Poluentes Químicos da Água/química
10.
Environ Sci Pollut Res Int ; 27(18): 22195-22205, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32060831

RESUMO

In the present study, commercial PES, PVDF, PTFE ultrafilter membranes, and two different nanomaterial (TiO2 and TiO2/CNT composite)-covered PVDF ultrafilter membranes (MWCO = 100 kDa) were used for the purification of an industrial oil-contaminated (produced) wastewater, with and without ozone pretreatment to compare the achievable fouling mitigations by the mentioned surface modifications and/or pre-ozonation. Fluxes, filtration resistances, foulings, and purification efficiencies were compared in detail. Pre-ozonation was able to reduce the total filtration resistance in all cases (up to 50%), independently from the membrane material. During the application of nanomaterial-modified membranes were by far the lowest filtration resistances measured, and in these cases, pre-ozonation resulted in a slight further reduction (11-13%) of the total filtration resistance. The oil removal efficiency was 83-91% in the case of commercial membranes and > 98% in the case of modified membranes. Moreover, the highest fluxes (301-362 L m-2 h-1) were also measured in the case of modified membranes. Overall, the utilization of nanomaterial-modified membranes was more beneficial than pre-ozonation, but with the combination of these methods, slightly higher fluxes, lower filtration resistances, and better antifouling properties were achieved; however, pre-ozonation slightly decreased the oil removal efficiency.


Assuntos
Nanoestruturas , Ozônio , Purificação da Água , Membranas Artificiais , Titânio , Ultrafiltração , Água
11.
Materials (Basel) ; 12(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395835

RESUMO

Titanium dioxide-carbon sphere (TiO2-CS) composites were constructed via using prefabricated carbon spheres as templates. By the removal of template from the TiO2-CS, TiO2 hollow structures (HS) were synthesized. The CS templates were prepared by the hydrothermal treatment of ordinary table sugar (sucrose). TiO2-HSs were obtained by removing CSs with calcination. Our own sensitized TiO2 was used for coating the CSs. The structure of the CSs, TiO2-CS composites, and TiO2-HSs were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectroscopy (DRS). The effect of various synthesis parameters (purification method of CSs, precursor quantity, and applied furnace) on the morphology was investigated. The photocatalytic activity was investigated by phenol model pollutant degradation under visible light irradiation (λ > 400 nm). It was established that the composite samples possess lower crystallinity and photocatalytic activity compared to TiO2 hollow structures. Based on XPS measurements, the carbon content on the surface of the TiO2-HS exerts an adverse effect on the photocatalytic performance. The synthesis parameters were optimized and the TiO2-HS specimen having the best absolute and surface normalized photocatalytic efficiency was identified. The superior properties were explained in terms of its unique morphology and surface properties. The stability of this TiO2-HS was investigated via XRD and SEM measurements after three consecutive phenol degradation tests, and it was found to be highly stable as it entirely retained its crystal phase composition, morphology and photocatalytic activity.

12.
Environ Sci Pollut Res Int ; 25(35): 34976-34984, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29392609

RESUMO

In the present study, oil in water emulsions (coil = 100 ppm; doil droplets < 2 µm) was purified with ozonation followed by microfiltration using polyethersulfone (PES) membrane (dpore = 0.2 µm). The effects of pre-ozonation on membrane microfiltration were investigated in detail both in case of ultrapure and model groundwater matrices, applying different durations (0, 5, 10, and 20 min) of pre-ozonation. Simultaneously, the effects of added inorganic water components on the combined method were investigated. Size distribution of oil droplets, zeta potentials, fluxes, and purification efficiencies were measured and fouling mechanisms were described in all cases. It was found that the matrix significantly affected the size distribution and adherence ability of oil droplets onto the membrane surface, therefore fouling mechanisms also were strongly dependent on the matrix. In case of low salt concentration, the total resistance was caused mainly by reversible resistance, which could be significantly reduced (eliminated) by pre-ozonation. In case of model groundwater matrix, nearly twice higher total resistance was measured, and irreversible resistance was dominant, because of the higher adhesion ability of the oil droplets onto the membrane surface. In this case, pre-ozonation resulted in much lower irreversible, but higher reversible resistance. Increased duration of pre-ozonation raised the total resistance and reduced the elimination efficiency (due to fragmented oil droplets and water soluble oxidation by-products) in both cases, therefore short pre-ozonation can be recommended both from economic and performance aspects.


Assuntos
Ozônio , Purificação da Água/métodos , Membranas Artificiais , Polímeros , Sulfonas , Ultrafiltração/métodos , Água
13.
Environ Sci Pollut Res Int ; 25(35): 34912-34921, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29288296

RESUMO

In the present study, TiO2-coated ultrafiltration membranes were prepared and used for oily water filtration (droplet size < 2 µm). The aim of this work was to investigate the effect of different salt contents on fouling and filtration properties of neat and TiO2-coated membranes during oil-in-water emulsion filtration. The effect of the TiO2 coating on the flux, surface free energy, and retention values was measured and compared with the neat membrane values. The cleanability of the fouled TiO2-coated membranes by UV irradiation was also investigated by measuring flux recovery and contact angles, and the chemical changes during cleaning were characterized by ATR-IR. It was found that increasing the salt content of the model wastewaters, oil-in-water emulsions, increased the zeta potential and the size of the droplets. The presence of the TiO2 coating decreases the membrane fouling during oily emulsion filtration compared to the neat membrane, due to the hydrophilicity of the coating regardless of the salt content of the emulsions. The neat and coated membrane oil retention was similar, 96 ± 2%. The coated membrane can be effectively cleaned with UV irradiation without additional chemicals and a significant flux recovery can be achieved. Monitoring of the cleaning process by following the membrane surface wettability and ATR-IR measurements showed that the recovery of flux does not mean the total elimination of the oil layer from the membrane surface.


Assuntos
Polivinil/química , Titânio/química , Ultrafiltração , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Incrustação Biológica/prevenção & controle , Emulsões , Filtração , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Óleos/química , Sais/química , Cloreto de Sódio , Purificação da Água
14.
J Environ Sci Health B ; 51(4): 205-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26764571

RESUMO

Various types of advanced oxidation processes (AOPs), such as UV photolysis, ozonation, heterogeneous photocatalysis and their combinations were comparatively examined at the same energy input in a home-made reactor. The oxidative transformations of the phenylurea herbicides fenuron, monuron and diuron were investigated. The initial rates of transformation demonstrated that UV photolysis was highly efficient in the cases of diuron and monuron. Ozonation proved to be much more effective in the transformation of fenuron than in those of the chlorine containing monuron and diuron. In heterogeneous photocatalysis, the rate of decomposition decreased with increase of the number of chlorine atoms in the target molecule. Addition of ozone to UV-irradiated solutions and/or TiO2-containing suspensions markedly increased the initial rates of degradation. Dehalogenation of monuron and diuron showed that each of these procedures is suitable for the simultaneous removal of chlorinated pesticides and their chlorinated intermediates. Heterogeneous photocatalysis was found to be effective in the mineralization.


Assuntos
Herbicidas/química , Poluentes Químicos da Água/química , Diurona/química , Compostos de Metilureia/química , Oxirredução , Ozônio/química , Compostos de Fenilureia/química , Fotólise , Raios Ultravioleta , Purificação da Água/métodos
15.
Artigo em Inglês | MEDLINE | ID: mdl-21929471

RESUMO

Water treatment method was developed for the removal of different anionic dyes such as methyl orange and indigo carmine, and also for thymol applying sodium bentonite and cationic surfactant - hexadecyltrimethylammonium bromide (HTAB) - or polyelectrolytes (polydiallyldimethylammonium chloride, poly-DADMAC and poly-amines). The removal efficiency of these model substrates was examined in model water using UV-Vis spectrophotometry, HPLC and TOC analysis. The clay mineral and HTAB were added in one step to the polluted model water in Jar-test experiments. The influence of the cation exchange capacity (CEC) of the applied clay mineral and the presence of polyaluminium chloride coagulant (BOPAC) were also tested for the water treatment process. The structures of the in situ produced and pre-prepared organoclay composites were compared by XRD analysis. The rapid formation of organoclay adsorbents provided very efficient removal of the dyes (65-90 % in 3-10 mg/L TOC(0) range) with 200 mg/L sodium bentonite dose, however thymol was less efficiently separated. Adsorption efficiencies of the composites were compared at different levels of ion exchange such as at 40, 60 and 100 %. In the case of thymol, the elimination of inorganic carbon from the model water before the TOC analysis resulted in some loss of the analysed volatile compound therefore the HPLC analysis was found to be the most suitable tool for the evaluation of the process. This one-step adsorption method using in situ formed organoclay was better performing than the conventional process in which the montmorillonite-surfactant composite is pre-preapared and subsequently added to the polluted water. The purification performance of this method was also evaluated on raw and artificially polluted thermal wastewater samples containing added thymol.


Assuntos
Compostos Orgânicos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Compostos Alílicos/química , Compostos Alílicos/isolamento & purificação , Hidróxido de Alumínio/química , Hidróxido de Alumínio/isolamento & purificação , Compostos Azo/química , Compostos Azo/isolamento & purificação , Cetrimônio , Compostos de Cetrimônio/química , Compostos de Cetrimônio/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Índigo Carmim/química , Índigo Carmim/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Poliaminas/química , Poliaminas/isolamento & purificação , Polímeros/química , Polímeros/isolamento & purificação , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...