Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e12262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707939

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-19 is myocardial injury, which is associated with a high risk of mortality. Myocardial injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by inflammatory processes that lead to damage to the heart tissue. Since one of the hallmarks of severe COVID-19 is the "cytokine storm", strategies to control inflammation caused by SARS-CoV-2 infection have been considered. Cannabinoids are known to have anti-inflammatory properties by negatively modulating the release of pro-inflammatory cytokines. Herein, we investigated the effects of the cannabinoid agonist WIN 55,212-2 (WIN) in human iPSC-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. WIN did not modify angiotensin-converting enzyme II protein levels, nor reduced viral infection and replication in hiPSC-CMs. On the other hand, WIN reduced the levels of interleukins six, eight, 18 and tumor necrosis factor-alpha (TNF-α) released by infected cells, and attenuated cytotoxic damage measured by the release of lactate dehydrogenase (LDH). Our findings suggest that cannabinoids should be further explored as a complementary therapeutic tool for reducing inflammation in COVID-19 patients.

2.
PeerJ ; 9: e12595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036128

RESUMO

SARS-CoV-2 infects cardiac cells and causes heart dysfunction. Conditions such as myocarditis and arrhythmia have been reported in COVID-19 patients. The Sigma-1 receptor (S1R) is a ubiquitously expressed chaperone that plays a central role in cardiomyocyte function. S1R has been proposed as a therapeutic target because it may affect SARS-CoV-2 replication; however, the impact of the inhibition of S1R in human cardiomyocytes remains to be described. In this study, we investigated the consequences of S1R inhibition in iPSC-derived human cardiomyocytes (hiPSC-CM). SARS-CoV-2 infection in hiPSC-CM was productive and reduced cell survival. S1R inhibition decreased both the number of infected cells and viral particles after 48 hours. S1R inhibition also prevented the release of pro-inflammatory cytokines and cell death. Although the S1R antagonist NE-100 triggered those protective effects, it compromised cytoskeleton integrity by downregulating the expression of structural-related genes and reducing beating frequency. Our findings suggest that the detrimental effects of S1R inhibition in human cardiomyocytes' integrity may abrogate its therapeutic potential against COVID and should be carefully considered.

3.
J Inorg Biochem ; 182: 83-91, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29452883

RESUMO

Nitric oxide has been involved in many key biological processes such as vasodilation, platelet aggregation, apoptosis, memory function, and this has drawn attention to the development of exogenous NO donors. Metallonitrosyl complexes are an important class of these compounds. Here, two new ruthenium nitrosyl complexes containing a thiocarbonyl ligand, with the formula cis-[Ru(phen)2(L)(NO)](PF6)3 (phen = phenantroline, L = thiourea or thiobenzamide), were synthesized and characterized by electronic spectroscopy, FTIR, NMR, mass spectrometry and voltammetric techniques. Theoretical calculations using Density Functional Theory (DFT) and Time-dependent Density Functional Theory (TD-DFT) were also used and further supported the characterizations of these complexes. An efficient release of nitric oxide by blue light was validated using a NO/HNO probe: 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, known as cPTIO. Interestingly, the complex containing thiourea cleaved DNA even in the dark, while both complexes showed great DNA photocleavage activity in blue light. This process might work mainly through NO and hydroxyl radical production. Additionally, these complexes showed promising vasodilator activity, whose mechanism of action was investigated using N-Nitro-l-arginine methyl ester hydrochloride (L-NAME) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and compared to sodium nitroprusside. Both compounds were indeed NO-mediated heme-dependent activators of soluble guanylate cyclase. Additionally, they did not show any significant cytotoxicity against cancer cell lines U87 and GBM02. Altogether, these results supported both complexes having potential pharmacological applications that deserve further studies.


Assuntos
Clivagem do DNA/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Luz , Compostos de Rutênio/química , Compostos de Rutênio/farmacologia , Vasodilatadores/química , Vasodilatadores/farmacologia , Estrutura Molecular , Óxido Nítrico/química , Rutênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...