Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLOS Glob Public Health ; 4(5): e0003091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768243

RESUMO

Sensitive and accurate malaria diagnosis is required for case management to accelerate control efforts. Diagnosis is particularly challenging where multiple Plasmodium species are endemic, and where P. falciparum hrp2/3 deletions are frequent. The Noul miLab is a fully automated portable digital microscope that prepares a blood film from a droplet of blood, followed by staining and detection of parasites by an algorithm. Infected red blood cells are displayed on the screen of the instrument. Time-to-result is approximately 20 minutes, with less than two minutes hands-on time. We evaluated the miLab among 659 suspected malaria patients in Gondar, Ethiopia, where P. falciparum and P. vivax are endemic, and the frequency of hrp2/3 deletions is high, and 991 patients in Ghana, where P. falciparum transmission is intense. Across both countries combined, the sensitivity of the miLab for P. falciparum was 94.3% at densities >200 parasites/µL by qPCR, and 83% at densities >20 parasites/µL. The miLab was more sensitive than local microscopy, and comparable to RDT. In Ethiopia, the miLab diagnosed 51/52 (98.1%) of P. falciparum infections with hrp2 deletion at densities >20 parasites/µL. Specificity of the miLab was 94.0%. For P. vivax diagnosis in Ethiopia, the sensitivity of the miLab was 97.0% at densities >200 parasites/µL (RDT: 76.8%, microscopy: 67.0%), 93.9% at densities >20 parasites/µL, and specificity was 97.6%. In Ethiopia, where P. falciparum and P. vivax were frequent, the miLab assigned the wrong species to 15/195 mono-infections at densities >20 parasites/µL by qPCR, and identified only 5/18 mixed-species infections correctly. In conclusion, the miLab was more sensitive than microscopy and thus is a valuable addition to the toolkit for malaria diagnosis, particularly for areas with high frequencies of hrp2/3 deletions.

2.
Elife ; 112022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35762586

RESUMO

Most rapid diagnostic tests for Plasmodium falciparum malaria target the Histidine-Rich Proteins 2 and 3 (HRP2 and HRP3). Deletions of the hrp2 and hrp3 genes result in false-negative tests and are a threat for malaria control. A novel assay for molecular surveillance of hrp2/hrp3 deletions was developed based on droplet digital PCR (ddPCR). The assay quantifies hrp2, hrp3, and a control gene with very high accuracy. The theoretical limit of detection was 0.33 parasites/µl. The deletion was reliably detected in mixed infections with wild-type and hrp2-deleted parasites at a density of >100 parasites/reaction. For a side-by-side comparison with the conventional nested PCR (nPCR) assay, 248 samples were screened in triplicate by ddPCR and nPCR. No deletions were observed by ddPCR, while by nPCR hrp2 deletion was observed in 8% of samples. The ddPCR assay was applied to screen 830 samples from Kenya, Zanzibar/Tanzania, Ghana, Ethiopia, Brazil, and Ecuador. Pronounced differences in the prevalence of deletions were observed among sites, with more hrp3 than hrp2 deletions. In conclusion, the novel ddPCR assay minimizes the risk of false-negative results (i.e., hrp2 deletion observed when the sample is wild type), increases sensitivity, and greatly reduces the number of reactions that need to be run.


Assuntos
Malária Falciparum , Malária , Antígenos de Protozoários/genética , Testes Diagnósticos de Rotina/métodos , Deleção de Genes , Humanos , Malária/genética , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética
3.
PLOS Glob Public Health ; 2(7): e0000828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962426

RESUMO

Rapid diagnostic tests (RDTs) are a key tool for the diagnosis of malaria infections among clinical and subclinical individuals. Low-density infections, and deletions of the P. falciparum hrp2/3 genes (encoding the HRP2 and HRP3 proteins detected by many RDTs) present challenges for RDT-based diagnosis. The novel Rapigen Biocredit three-band Plasmodium falciparum HRP2/LDH RDT was evaluated among 444 clinical and 468 subclinical individuals in a high transmission setting in Burundi. Results were compared to the AccessBio CareStart HRP2 RDT, and qPCR with a sensitivity of <0.3 parasites/µL blood. Sensitivity compared to qPCR among clinical patients for the Biocredit RDT was 79.9% (250/313, either of HRP2/LDH positive), compared to 73.2% (229/313) for CareStart (P = 0.048). Specificity of the Biocredit was 82.4% compared to 96.2% for CareStart. Among subclinical infections, sensitivity was 72.3% (162/224) compared to 58.5% (131/224) for CareStart (P = 0.003), and reached 88.3% (53/60) in children <15 years. Specificity was 84.4% for the Biocredit and 93.4% for the CareStart RDT. No (0/362) hrp2 and 2/366 hrp3 deletions were observed. In conclusion, the novel RDT showed improved sensitivity for the diagnosis of P. falciparum.

5.
Malar J ; 19(1): 354, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008438

RESUMO

BACKGROUND: Understanding local anopheline vector species and their bionomic traits, as well as related human factors, can help combat gaps in protection. METHODS: In San José de Chamanga, Esmeraldas, at the Ecuadorian Pacific coast, anopheline mosquitoes were sampled by both human landing collections (HLCs) and indoor-resting aspirations (IAs) and identified using both morphological and molecular methods. Human behaviour observations (HBOs) (including temporal location and bed net use) were documented during HLCs as well as through community surveys to determine exposure to mosquito bites. A cross-sectional evaluation of Plasmodium falciparum and Plasmodium vivax infections was conducted alongside a malaria questionnaire. RESULTS: Among 222 anopheline specimens captured, based on molecular analysis, 218 were Nyssorhynchus albimanus, 3 Anopheles calderoni (n = 3), and one remains unidentified. Anopheline mean human-biting rate (HBR) outdoors was (13.69), and indoors (3.38) (p = 0.006). No anophelines were documented resting on walls during IAs. HBO-adjusted human landing rates suggested that the highest risk of being bitten was outdoors between 18.00 and 20.00 h. Human behaviour-adjusted biting rates suggest that overall, long-lasting insecticidal bed nets (LLINs) only protected against 13.2% of exposure to bites, with 86.8% of exposure during the night spent outside of bed net protection. The malaria survey found 2/398 individuals positive for asymptomatic P. falciparum infections. The questionnaire reported high (73.4%) bed net use, with low knowledge of malaria. CONCLUSION: The exophagic feeding of anopheline vectors in San Jose de Chamanga, when analysed in conjunction with human behaviour, indicates a clear gap in protection even with high LLIN coverage. The lack of indoor-resting anophelines suggests that indoor residual spraying (IRS) may have limited effect. The presence of asymptomatic infections implies the presence of a human reservoir that may maintain transmission.


Assuntos
Culicidae/parasitologia , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Mosquitos Vetores/parasitologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anopheles/parasitologia , Criança , Pré-Escolar , Estudos Transversais , Equador/epidemiologia , Feminino , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Prevalência , Risco , Inquéritos e Questionários , Adulto Jovem
6.
Malar J ; 18(1): 415, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822269

RESUMO

BACKGROUND: Malaria continues to be endemic in the coast and Amazon regions of Ecuador. Clarifying current Plasmodium falciparum resistance in the country will support malaria elimination efforts. In this study, Ecuadorian P. falciparum parasites were analysed to determine their drug resistance genotypes and phenotypes. METHODS: Molecular analyses were performed to search for mutations in known resistance markers (Pfcrt, Pfdhfr, Pfdhps, Pfmdr1, k13). Pfmdr1 copy number was determined by qPCR. PFMDR1 transporter activity was characterized in live parasites using live cell imaging in combination with the Fluo-4 transport assay. Chloroquine, quinine, lumefantrine, mefloquine, dihydroartemisinin, and artemether sensitivities were measured by in vitro assays. RESULTS: The majority of samples from this study presented the CVMNT genotype for Pfcrt (72-26), NEDF SDFD mutations in Pfmdr1 and wild type genotypes for Pfdhfr, Pfdhps and k13. The Ecuadorian P. falciparum strain ESM-2013 showed in vitro resistance to chloroquine, but sensitivity to quinine, lumefantrine, mefloquine, dihydroartemisinin and artemether. In addition, transport of the fluorochrome Fluo-4 from the cytosol into the digestive vacuole (DV) of the ESM-2013 strain was minimally detected in the DV. All analysed samples revealed one copy of Pfmdr1. CONCLUSION: This study indicates that Ecuadorian parasites presented the genotype and phenotype for chloroquine resistance and were found to be sensitive to SP, artemether-lumefantrine, quinine, mefloquine, and dihydroartemisinin. The results suggest that the current malaria treatment employed in the country remains effective. This study clarifies the status of anti-malarial resistance in Ecuador and informs the P. falciparum elimination campaigns in the country.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Equador , Genótipo , Humanos , Malária Falciparum/parasitologia , Testes de Sensibilidade Parasitária , Fenótipo
7.
Malar J ; 18(1): 251, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349843

RESUMO

BACKGROUND: Ecuador plans to eliminate malaria by 2020, and the country has already seen a decrease in the number of cases from more than 100,000 in 2000 to only 618 in 2015. Around 30% of malaria infections in Ecuador are caused by Plasmodium falciparum. Most malaria population genetics studies performed in Latin America, especially in the Pacific Coast, indicate a high clonality and a clear structure of P. falciparum populations. It was shown that an outbreak of P. falciparum in northwest Ecuador was the result of a clonal expansion of parasites circulating at low levels in the country or re-invading Ecuador from neighbouring territories. However, general characteristics of P. falciparum circulating in the northwest coast of Ecuador have not been determined. The main goal of this study was to genetically characterize the population structure of P. falciparum in coastal Ecuadorian localities bordering with Colombia. METHODS: Molecular investigation of 41 samples collected from 2013 to 2016 in San Lorenzo County, northwest Ecuador was performed using seven neutral microsatellite markers. RESULTS: The genetic population structure of P. falciparum in northwest Ecuador is clearly defined as three different genetic groups previously reported in Ecuador, Peru and Colombia. CONCLUSIONS: The limited number of P. falciparum clonal types that are circulating in northwest Ecuador, are related to ancestral parasite clonal lineages reported in the Pacific Coast. These parasites could be a product of migration from neighbouring regions or residual clonal types circulating in the country in low proportions. Studies of the genetic characterization of P. falciparum in eliminating areas help determine the possible origin of parasites in order to create strategies to prevent the entrance of new lineages and achieve local elimination of malaria.


Assuntos
Variação Genética , Repetições de Microssatélites , Plasmodium falciparum/genética , Equador/epidemiologia , Malária Falciparum/epidemiologia
8.
Malar J ; 13 Suppl 1: 497, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26651993

RESUMO

BACKGROUND: Determining the source of malaria outbreaks in Ecuador and identifying remaining transmission foci will help in malaria elimination efforts. In this study, the genetic signatures of Plasmodium falciparum isolates, obtained from an outbreak that occurred in northwest Ecuador from 2012 to 2013, were characterized. METHODS: Molecular investigation of the outbreak was performed using neutral microsatellites, drug resistance markers and pfhrp2 and pfhrp3 genotyping. RESULTS: A majority of parasite isolates (31/32) from this outbreak were of a single clonal type that matched a clonal lineage previously described on the northern coast of Peru and a historical isolate from Ecuador. All but one isolate carried a chloroquine-resistant pfcrt genotype and sulfadoxine- and pyrimethamine-sensitive pfdhps and pfdhfr genotypes. Pfmdr1 mutations were identified in codons 184 and 1042. In addition, most samples (97 %) showed presence of pfhrp2 gene. CONCLUSIONS: This study indicates that parasites from a single clonal lineage largely contributed to this outbreak and this lineage was found to be genetically related to a lineage previously reported in the Peruvian coast and historical Ecuadorian parasites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...