Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2657: 253-284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149537

RESUMO

Microorganisms play a primary role in regulating biogeochemical cycles and are a valuable source of enzymes that have biotechnological applications, such as carbohydrate-active enzymes (CAZymes). However, the inability to culture the majority of microorganisms that exist in natural ecosystems restricts access to potentially novel bacteria and beneficial CAZymes. While commonplace molecular-based culture-independent methods such as metagenomics enable researchers to study microbial communities directly from environmental samples, recent progress in long-read sequencing technologies are advancing the field. We outline key methodological stages that are required as well as describe specific protocols that are currently used for long-read metagenomic projects dedicated to CAZyme discovery.


Assuntos
Metagenômica , Microbiota , Metagenômica/métodos , Metagenoma , Carboidratos , Sequenciamento de Nucleotídeos em Larga Escala
2.
ISME J ; 17(7): 1128-1140, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169869

RESUMO

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.


Assuntos
Cilióforos , Rúmen , Animais , Bovinos , Rúmen/microbiologia , Proteômica , Cilióforos/genética , Cilióforos/metabolismo , Ruminantes/metabolismo , Amido/metabolismo , Metano/metabolismo
3.
Genome Biol Evol ; 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35679131

RESUMO

Phylogenetic and functional group analysis of the genomes of anaerobic bacteria isolated from Periplaneta americana digestive tracts suggest that they represent novel Lachnospiraceae genera. PAL113 and PAL227 isolate genomes encoded short-chain fatty acid biosynthetic pathways and plant fiber and chitin catabolism and other carbohydrate utilization genes common in related Lachnospiraceae species, yet the presence of operons containing flagellar assembly pathways were among several distinguishing features. In general, PAL113 and PAL227 isolates encode an array of gene products that would enable them to thrive in the insect gut environment and potentially play a role in host diet processing. We hypothesize that cladogenesis of these isolates could be due to their oxygen sensitivity, reliance upon the host for dispersal and genetic drift and not necessarily as a result of an ongoing mutualism.

4.
Curr Opin Microbiol ; 67: 102143, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35338908

RESUMO

Microbiomes and their enzymes process many of the nutrients accessible in the gastrointestinal tract of bilaterians and play an essential role in host health and nutrition. In this review, we describe recent insights into nutrient processing in microbiomes across three exemplary yet contrasting gastrointestinal ecosystems (humans, ruminants and insects), with focus on bacterial mechanisms for the utilization of common and atypical dietary glycans as well as host-derived mucus glycans. In parallel, we discuss findings from multi-omic studies that have provided new perspectives on understanding glycan-dependent interactions and the complex food-webs of microbial populations in their natural habitat. Using key examples, we emphasize how increasing understanding of glycan processing by gut microbiomes can provide critical insights to assist 'microbiome reprogramming', a growing field that seeks to leverage diet to improve animal growth and host health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Trato Gastrointestinal/microbiologia , Polissacarídeos
5.
mSystems ; 6(4): e0080221, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427529

RESUMO

Omnivorous animals, including humans, harbor diverse, species-rich gut communities that impact their growth, development, and homeostasis. Model invertebrates are broadly accessible experimental platforms that enable linking specific species or species groups to host phenotypes, yet often their specialized diets and distinct gut microbiota make them less comparable to human and other mammalian and gut communities. The omnivorous cockroach Periplaneta americana harbors ∼4 × 102 bacterial genera within its digestive tract and is enriched with taxa commonly found in omnivorous mammals (i.e., Proteobacteria, Bacteroidetes, and Firmicutes). These features make P. americana a valuable platform for identifying microbe-mediated host phenotypes with potential translations to mammals. Rearing P. americana insects under germfree conditions resulted in prolonging development time by ∼30% and an up to ∼8% reduction in body size along three dimensions. Germfree rearing resulted in downregulation of gene networks involved in growth, energy homeostasis, and nutrient availability. Reintroduction of a defined microbiota comprised of a subset of P. americana commensals to germfree insects did not recover normal growth and developmental phenotypes or transcriptional profiles observed in conventionally reared insects. These results are in contrast with specialist-feeding model insects (e.g., Drosophila), where introduction of a single endemic bacterial species to germfree condition-reared specimens recovered normal host phenotypes. These data suggest that understanding microbe-mediated host outcomes in animals with species-rich communities should include models that typically maintain similarly diverse microbiomes. The dramatic transcriptional, developmental, and morphological phenotypes linked to gut microbiome status in this study illustrates how microbes are key players in animal growth and evolution. IMPORTANCE Broadly accessible model organisms are essential for illustrating how microbes are engaged in the growth, development, and evolution of animals. We report that germfree rearing of omnivorous Periplaneta americana cockroaches resulted in growth defects and severely disrupted gene networks that regulate development, which highlights the importance of gut microbiota in these host processes. Absence of gut microbiota elicited a starvation-like transcriptional response in which growth and development were inhibited while nutrient scavenging was enhanced. Additionally, reintroduction of a subset of cockroach gut bacterial commensals did not broadly recover normal expression patterns, illustrating that a particular microbiome composition may be necessary for normal host development. Invertebrate microbiota model systems that enable disentangling complex, species-rich communities are essential for linking microbial taxa to specific host phenotypes.

6.
PLoS Pathog ; 17(1): e1009222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465168

RESUMO

Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor ß-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Endocardite Bacteriana/patologia , Ácido N-Acetilneuramínico/metabolismo , Streptococcus/metabolismo , Adesinas Bacterianas/genética , Animais , Proteínas de Bactérias/genética , Endocardite Bacteriana/metabolismo , Endocardite Bacteriana/microbiologia , Masculino , Coelhos , Streptococcus/classificação , Streptococcus/genética , Streptococcus/isolamento & purificação
7.
Front Cell Infect Microbiol ; 10: 572951, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178627

RESUMO

Diarrheagenic E. coli can be separated into six distinct pathotypes, with enteroaggregative (EAEC) and diffusely-adherent E. coli (DAEC) among the least characterized. To gain additional insights into these two pathotypes we performed whole genome sequencing of ten DAEC, nine EAEC strains, isolated from Mexican children with diarrhea, and one EAEC plus one commensal E. coli strains isolated from an adult with diarrhea and a healthy child, respectively. These genome sequences were compared to 85 E. coli genomes available in public databases. The EAEC and DAEC strains segregated into multiple different clades; however, six clades were heavily or exclusively comprised of EAEC and DAEC strains, suggesting a phylogenetic relationship between these two pathotypes. EAEC strains harbored the typical virulence factors under control of the activator AggR, but also several toxins, bacteriocins, and other virulence factors. DAEC strains harbored several iron-scavenging systems, toxins, adhesins, and complement resistance or Immune system evasion factors that suggest a pathogenic paradigm for this poorly understood pathotype. Several virulence factors for both EAEC and DAEC were associated with clinical presentations, not only suggesting the importance of these factors, but also potentially indicating opportunities for intervention. Our studies provide new insights into two distinct but related diarrheagenic organisms.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Adulto , Criança , Diarreia , Escherichia coli/genética , Humanos , México , Filogenia
8.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060023

RESUMO

Beneficial gut microbes can facilitate insect growth on diverse diets. The omnivorous American cockroach, Periplaneta americana (Insecta: Blattodea), thrives on a diet rich in plant polysaccharides and harbors a species-rich gut microbiota responsive to host diet. Bacteroidetes are among the most abundant taxa in P. americana and other cockroaches, based on cultivation-independent gut community profiling, and these potentially polysaccharolytic bacteria may contribute to host diet processing. Eleven Bacteroidetes isolates were cultivated from P. americana digestive tracts, and phylogenomic analyses suggest that they were new Bacteroides, Dysgonomonas, Paludibacter, and Parabacteroides species distinct from those previously isolated from other insects, humans, and environmental sources. In addition, complete genomes were generated for each isolate, and polysaccharide utilization loci (PULs) and several non-PUL-associated carbohydrate-active enzyme (CAZyme)-coding genes that putatively target starch, pectin, and/or cellulose were annotated in each of the isolate genomes. Type IX secretion system (T9SS)- and CAZyme-coding genes tagged with the corresponding T9SS recognition and export C-terminal domain were observed in some isolates, suggesting that these CAZymes were deployed via non-PUL outer membrane translocons. Additionally, single-substrate growth and enzymatic assays confirmed genomic predictions that a subset of the Bacteroides and Dysgonomonas isolates could degrade starch, pectin, and/or cellulose and grow in the presence of these substrates as a single sugar source. Plant polysaccharides enrich P. americana diets, and many of these gut isolates are well equipped to exploit host dietary inputs and potentially contribute to gut community and host nutrient accessibility.IMPORTANCE Gut microbes are increasingly being recognized as critical contributors to nutrient accessibility in animals. The globally distributed omnivorous American cockroach (Periplaneta americana) harbors many bacterial phyla (e.g., Bacteroidetes) that are abundant in vertebrates. P. americana thrives on a highly diverse plant-enriched diet, making this insect a rich potential source of uncharacterized polysaccharolytic bacteria. We have cultivated, completely sequenced, and functionally characterized several novel Bacteroidetes species that are endemic to the P. americana gut, and many of these isolates can degrade simple and complex polysaccharides. Cultivation and genomic characterization of these Bacteroidetes isolates further enable deeper insight into how these taxa participate in polysaccharide metabolism and, more broadly, how they affect animal health and development.


Assuntos
Bacteroidetes/fisiologia , Periplaneta/fisiologia , Polissacarídeos/metabolismo , Simbiose , Animais , Bacteroidetes/classificação , Dieta , Periplaneta/microbiologia
9.
J Basic Microbiol ; 59(8): 792-806, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31368594

RESUMO

The aim of this study was to examine four strains of two yeast species in relation to their capability for assimilating alkanes in the presence of heavy metals (HMs). The four strains tested were Candida pseudoglaebosa ENCB-7 and Kodamaea ohmeri ENCB-8R, ENCB-23, and ENCB-VIK. Determination was made of the expression of CYP52 genes involved in alkane hydroxylation. When exposed to Cu2+ , Zn2+ , Pb2+ , Cd2+ , and As3+ at pH 3 and 5, all four strains could assimilate several n-alkanes having at least six carbon atoms. The three K. ohmeri strains could also utilize branched alkanes, cycloalkanes, and n-octanol as sole carbon sources. Kinetic assays demonstrated greater biomass production and specific growth of the yeasts exposed to long-chain n-alkanes. Fragments of paralogous CYP52 genes of C. pseudoglaebosa ENCB-7 and K. ohmeri ENCB-23 were amplified, sequenced, and phylogenetically evaluated. Reverse-transcription polymerase chain reaction revealed that n-nonane and n-decane induced to CpCYP52-G3, CpCYP52-G9, and CpCYP52-G10. KoCYP52-G3 was induced with n-decane and n-octanol. Also, CpCYP52-G3 and CpCYP52-G9 were induced by glucose. In conclusion, C. pseudoglaebosa and K. ohmeri were able to degrade several alkanes in the presence of HMs and under acidic conditions. These yeasts harbor paralogous alkane-induced CYP52 genes, which display different profiles of transcriptional expression.


Assuntos
Alcanos/metabolismo , Metais Pesados/metabolismo , Saccharomycetales/metabolismo , Alcanos/química , Biodegradação Ambiental , Biomassa , Candida/classificação , Candida/genética , Candida/crescimento & desenvolvimento , Candida/metabolismo , Sistema Enzimático do Citocromo P-450/genética , DNA Ribossômico/genética , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Cinética , Filogenia , Saccharomycetales/classificação , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento
10.
J Basic Microbiol ; 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31183881

RESUMO

The aim of this study was to examine four strains of two yeast species in relation to their capability for assimilating alkanes in the presence of heavy metals (HMs). The four strains tested were Candida pseudoglaebosa ENCB-7 and Kodamaea ohmeri ENCB-8R, ENCB-23, and ENCB-VIK. Determination was made of the expression of CYP52 genes involved in alkane hydroxylation. When exposed to Cu2+ , Zn2+ , Pb2+ , Cd2+ , and As3+ at pH 3 and 5, all four strains could assimilate several n-alkanes having at least six carbon atoms. The three K. ohmeri strains could also utilize branched alkanes, cycloalkanes, and n-octanol as sole carbon sources. Kinetic assays demonstrated greater biomass production and specific growth of the yeasts exposed to long-chain n-alkanes. Fragments of paralogous CYP52 genes of C. pseudoglaebosa ENCB-7 and K. ohmeri ENCB-23 were amplified, sequenced, and phylogenetically evaluated. Reverse-transcription polymerase chain reaction revealed that n-nonane and n-decane induced to CpCYP52-G3, CpCYP52-G9, and CpCYP52-G10. KoCYP52-G3 was induced with n-decane and n-octanol. Also, CpCYP52-G3 and CpCYP52-G9 were induced by glucose. In conclusion, C. pseudoglaebosa and K. ohmeri were able to degrade several alkanes in the presence of HMs and under acidic conditions. These yeasts harbor paralogous alkane-induced CYP52 genes, which display different profiles of transcriptional expression.

11.
Life (Basel) ; 9(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609847

RESUMO

The scale insect Dactylopius coccus produces high amounts of carminic acid, which has historically been used as a pigment by pre-Hispanic American cultures. Nowadays carmine is found in food, cosmetics, and textiles. Metagenomic approaches revealed that Dactylopius spp. cochineals contain two Wolbachia strains, a betaproteobacterium named Candidatus Dactylopiibacterium carminicum and Spiroplasma, in addition to different fungi. We describe here a transcriptomic analysis indicating that Dactylopiibacterium is metabolically active inside the insect host, and estimate that there are over twice as many Dactylopiibacterium cells in the hemolymph than in the gut, with even fewer in the ovary. Albeit scarce, the transcripts in the ovaries support the presence of Dactylopiibacterium in this tissue and a vertical mode of transmission. In the cochineal, Dactylopiibacterium may catabolize plant polysaccharides, and be active in carbon and nitrogen provisioning through its degradative activity and by fixing nitrogen. In most insects, nitrogen-fixing bacteria are found in the gut, but in this study they are shown to occur in the hemolymph, probably delivering essential amino acids and riboflavin to the host from nitrogen substrates derived from nitrogen fixation.

12.
Genome Biol Evol ; 9(9): 2237-2250, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605507

RESUMO

The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500 years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts. Here, we characterized a symbiont from the carmine cochineal insects, Candidatus Dactylopiibacterium carminicum (betaproteobacterium, Rhodocyclaceae family) and found it in D. coccus and in D. opuntiae ovaries by fluorescent in situ hybridization, suggesting maternal inheritance. Bacterial genomes recovered from metagenomic data derived from whole insects or tissues both from D. coccus and from D. opuntiae were around 3.6 Mb in size. Phylogenomics showed that dactylopiibacteria constituted a closely related clade neighbor to nitrogen fixing bacteria from soil or from various plants including rice and other grass endophytes. Metabolic capabilities were inferred from genomic analyses, showing a complete operon for nitrogen fixation, biosynthesis of amino acids and vitamins and putative traits of anaerobic or microoxic metabolism as well as genes for plant interaction. Dactylopiibacterium nif gene expression and acetylene reduction activity detecting nitrogen fixation were evidenced in D. coccus hemolymph and ovaries, in congruence with the endosymbiont fluorescent in situ hybridization location. Dactylopiibacterium symbionts may compensate for the nitrogen deficiency in the cochineal diet. In addition, this symbiont may provide essential amino acids, recycle uric acid, and increase the cochineal life span.


Assuntos
Hemípteros/microbiologia , Fixação de Nitrogênio , Rhodocyclaceae/classificação , Simbiose , Animais , Feminino , Genoma Bacteriano , Ovário/microbiologia , Filogenia , Rhodocyclaceae/isolamento & purificação
13.
G3 (Bethesda) ; 6(10): 3343-3349, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27543297

RESUMO

Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA.


Assuntos
Genoma Bacteriano , Genômica , Hemípteros/microbiologia , Wolbachia/genética , Animais , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Transporte Biológico , Metabolismo Energético , Feminino , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , RNA Bacteriano , RNA Ribossômico 16S , Estresse Fisiológico/genética , Simbiose , Fatores de Virulência , Wolbachia/classificação , Wolbachia/isolamento & purificação , Wolbachia/metabolismo
14.
Front Microbiol ; 7: 954, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446001

RESUMO

We studied fungal species associated with the carmine cochineal Dactylopius coccus and other non-domesticated Dactylopius species using culture-dependent and -independent methods. Thirty seven fungi were isolated in various culture media from insect males and females from different developmental stages and Dactylopius species. 26S rRNA genes and ITS sequences, from cultured fungal isolates revealed different species of Cryptococcus, Rhodotorula, Debaryomyces, Trametes, and Penicillium, which are genera newly associated with Dactylopius. Uric acid (UA) and uricase activity were detected in tissues extracts from different insect developmental stages. However, accumulation of high UA levels and low uricase activities were found only after antifungal treatments, suggesting an important role of fungal species in its metabolism. Additionally, uricolytic fungal isolates were identified and characterized that presumably are involved in nitrogen recycling metabolism. After metagenomic analyses from D. coccus gut and hemolymph DNA and from two published data sets, we confirmed the presence of fungal genes involved in UA catabolism, suggesting that fungi help in the nitrogen recycling process in Dactylopius by uricolysis. All these results show the importance of fungal communities in scale insects such as Dactylopius.

16.
Syst Appl Microbiol ; 38(6): 390-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26189661

RESUMO

Wolbachia are highly extended bacterial endosymbionts that infect arthropods and filarial nematodes and produce contrasting phenotypes on their hosts. Wolbachia taxonomy has been understudied. Currently, Wolbachia strains are classified into phylogenetic supergroups. Here we applied phylogenomic analyses to study Wolbachia evolutionary relationships and examined metrics derived from their genome sequences such as average nucleotide identity (ANI), in silico DNA-DNA hybridization (DDH), G+C content, and synteny to shed light on the taxonomy of these bacteria. Draft genome sequences of strains wDacA and wDacB obtained from the carmine cochineal insect Dactylopius coccus were included. Although all analyses indicated that each Wolbachia supergroup represents a distinct evolutionary lineage, we found that some of the analyzed supergroups showed enough internal heterogeneity to be considered as assemblages of more than one species. Thus, supergroups would represent supraspecific groupings. Consequently, Wolbachia pipientis nomen species would apply only to strains of supergroup B and we propose the designation of 'Candidatus Wolbachia bourtzisii', 'Candidatus Wolbachia onchocercicola', 'Candidatus Wolbachia blaxterii', 'Candidatus Wolbachia brugii', 'Candidatus Wolbachia taylorii', 'Candidatus Wolbachia collembolicola' and 'Candidatus Wolbachia multihospitis' for other supergroups.


Assuntos
Biologia Computacional/métodos , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Wolbachia/classificação , Wolbachia/genética , Animais , Artrópodes/microbiologia , Composição de Bases , DNA Bacteriano/química , Dados de Sequência Molecular , Nematoides/microbiologia , Hibridização de Ácido Nucleico
17.
Front Genet ; 6: 348, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734060

RESUMO

The study of microorganisms that pervade each and every part of this planet has encountered many challenges through time such as the discovery of unknown organisms and the understanding of how they interact with their environment. The aim of this review is to take the reader along the timeline and major milestones that led us to modern metagenomics. This new and thriving area is likely to be an important contributor to solve different problems. The transition from classical microbiology to modern metagenomics studies has required the development of new branches of knowledge and specialization. Here, we will review how the availability of high-throughput sequencing technologies has transformed microbiology and bioinformatics and how to tackle the inherent computational challenges that arise from the DNA sequencing revolution. New computational methods are constantly developed to collect, process, and extract useful biological information from a variety of samples and complex datasets, but metagenomics needs the integration of several of these computational methods. Despite the level of specialization needed in bioinformatics, it is important that life-scientists have a good understanding of it for a correct experimental design, which allows them to reveal the information in a metagenome.

18.
J Food Sci ; 79(8): M1545-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25039289

RESUMO

The microbiota associated with spontaneous fermentation of vegetables in a saline substrate may represent an important group of bacteria in the food industry. In this work, the lactic acid bacteria (LAB) Weissella cibaria, Lactobacillus plantarum, Lactobacillus paraplantarum, and Leuconostoc citreum were identified by partial 16S rRNA gene sequence analysis. In addition, entophytic bacteria such as Pantoea eucalypti, Pantoea anthophila, Enterobacter cowanii, and Enterobacter asburiae were detected, but they were irrelevant for the fermentation process and were inhibited after 12 h of fermentation when the pH decreased from 6.5 to 4.9. Moreover, 2 species of yeast were isolated and identified as Hanseniaspora pseudoguilliermondii and Kodamaea ohmeri by their partial 26S rRNA gene sequence. The growth of LAB was evaluated at different sodium chloride contents. L. citreum was the most halotolerant species followed by L. plantarum and W. cibaria with a concentration index to obtain a 50% population reduction (IC(50)) of 7.2%, 6.6%, and 5.2%, respectively. Furthermore, the growth of LAB and Escherichia coli O157:H7 was evaluated in the presence of the main phenylpropanoids from chilli peppers such as p-coumaric and ferulic acid. It was determined that LAB can grow in both acids at 4 mM, unlike E. coli O157:H7, whose growth is inhibited in the presence of these acids.


Assuntos
Capsicum/microbiologia , Fermentação , Lactobacillaceae/isolamento & purificação , Leuconostoc/isolamento & purificação , DNA Bacteriano/genética , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/isolamento & purificação , Microbiologia de Alimentos , Lactobacillaceae/classificação , Lactobacillaceae/crescimento & desenvolvimento , Leuconostoc/crescimento & desenvolvimento , Fenótipo , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Verduras/microbiologia , Leveduras/crescimento & desenvolvimento , Leveduras/isolamento & purificação
19.
Microb Ecol ; 66(1): 200-10, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23525792

RESUMO

The bark beetles of the genus Dendroctonus feed on phloem that is a nitrogen-limited source. Nitrogen fixation and nitrogen recycling may compensate or alleviate such a limitation, and beetle-associated bacteria capable of such processes were identified. Raoultella terrigena, a diazotrophic bacteria present in the gut of Dendroctonus rhizophagus and D. valens, exhibited high acetylene reduction activity in vitro with different carbon sources, and its nifH and nifD genes were sequenced. Bacteria able to recycle uric acid were Pseudomonas fluorescens DVL3A that used it as carbon and nitrogen source, Serratia proteomaculans 2A CDF and Rahnella aquatilis 6-DR that used uric acid as sole nitrogen source. Also, this is the first report about the uric acid content in whole eggs, larvae, and adults (male and female) samples of the red turpentine beetle (Dendroctonus valens). Our results suggest that the gut bacteria of these bark beetles could contribute to insect N balance.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Besouros/microbiologia , Fixação de Nitrogênio , Animais , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Besouros/classificação , Besouros/crescimento & desenvolvimento , Feminino , Trato Gastrointestinal/microbiologia , Larva/classificação , Larva/crescimento & desenvolvimento , Larva/microbiologia , Masculino , Dados de Sequência Molecular , Nitrogênio/metabolismo , Nitrogenase/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...