Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(50): eadk1430, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091395

RESUMO

Current-induced self-sustained magnetization oscillations in spin-torque nano-oscillators (STNOs) are promising candidates for ultra-agile microwave sources or detectors. While usually STNOs behave as a monochromatic source, we report here clear bimodal simultaneous emission of incommensurate microwave oscillations in the frequency range of 6 to 10 gigahertz at femtowatt level power. These two tones correspond to two parametrically coupled eigenmodes with tunable splitting. The emission range is crucially sensitive to the change in hybridization of the eigenmodes of free and fixed layers, for instance, through a slight tilt of the applied magnetic field from the normal of the nanopillar. Our experimental findings are supported both analytically and by micromagnetic simulations, which ascribe the process to four-magnon scattering between a pair of radially symmetric magnon modes and a pair of magnon modes with opposite azimuthal index. Our findings pave the way for enhanced cognitive telecommunications and neuromorphic systems that use frequency multiplexing to improve communication performance.

2.
Sci Adv ; 9(32): eadg4609, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566658

RESUMO

Spin waves are ideal candidates for wave-based computing, but the construction of magnetic circuits is blocked by a lack of an efficient mechanism to excite long-running exchange spin waves with normalized amplitudes. Here, we solve the challenge by exploiting a deeply nonlinear phenomenon for forward volume spin waves in 200-nm-wide nanoscale waveguides and validate our concept using microfocused Brillouin light scattering spectroscopy. An unprecedented nonlinear frequency shift of more than 2 GHz is achieved, corresponding to a magnetization precession angle of 55° and enabling the excitation of spin waves with wavelengths down to 200 nm. The amplitude of the excited spin waves is constant and independent of the input microwave power due to the self-locking nonlinear shift, enabling robust adjustment of the spin-wave amplitudes in future on-chip magnonic integrated circuits.

3.
Nat Commun ; 14(1): 2183, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069148

RESUMO

Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (|S11 | > 2) for input power on the order of nW (<-40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems.

4.
ACS Appl Mater Interfaces ; 13(17): 20288-20295, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33885300

RESUMO

The ability to control and tune magnetic dissipation is a key concept of emergent spintronic technologies. Magnon scattering processes constitute a major dissipation channel in nanomagnets, redefine their response to spin torque, and hold the promise for manipulating magnetic states on the quantum level. Controlling these processes in nanomagnets, while being imperative for spintronic applications, has remained difficult to achieve. Here, we propose an approach for controlling magnon scattering by a switch that generates nonuniform magnetic field at nanoscale. We provide an experimental demonstration in magnetic tunnel junction nanodevices, consisting of a free layer and a synthetic antiferromagnet. By triggering the spin-flop transition in the synthetic antiferromagnet and utilizing its stray field, magnon interaction in the free layer is toggled. The results open up avenues for tuning nonlinearities in magnetic neuromorphic applications and for engineering coherent magnon coupling in hybrid quantum information technologies.

5.
Sci Adv ; 4(1): e1701517, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29376117

RESUMO

Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.

6.
Nano Lett ; 17(1): 572-577, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28002674

RESUMO

Manipulation of magnetization by electric field is a central goal of spintronics because it enables energy-efficient operation of spin-based devices. Spin wave devices are promising candidates for low-power information processing, but a method for energy-efficient excitation of short-wavelength spin waves has been lacking. Here we show that spin waves in nanoscale magnetic tunnel junctions can be generated via parametric resonance induced by electric field. Parametric excitation of magnetization is a versatile method of short-wavelength spin wave generation, and thus, our results pave the way toward energy-efficient nanomagnonic devices.

7.
Sci Rep ; 6: 25018, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27113392

RESUMO

The voltage-controlled magnetic anisotropy (VCMA) effect, which manifests itself as variation of anisotropy of a thin layer of a conductive ferromagnet on a dielectric substrate under the influence of an external electric voltage, can be used for the development of novel information storage and signal processing devices with low power consumption. Here it is demonstrated by micromagnetic simulations that the application of a microwave voltage to a nanosized VCMA gate in an ultrathin ferromagnetic nanowire results in the parametric excitation of a propagating spin wave, which could serve as a carrier of information. The frequency of the excited spin wave is twice smaller than the frequency of the applied voltage while its amplitude is limited by 2 mechanisms: (i) the so-called "phase mechanism" described by the Zakharov-L'vov-Starobinets "S-theory" and (ii) the saturation mechanism associated with the nonlinear frequency shift of the excited spin wave. The developed extension of the "S-theory", which takes into account the second limitation mechanism, allowed us to estimate theoretically the efficiency of the parametric excitation of spin waves by the VCMA effect.

8.
Sci Rep ; 5: 16942, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26592432

RESUMO

Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...