Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Cell Biol ; 183: 381-397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548420

RESUMO

Glioblastoma (GBM) is the deadliest of all brain cancers. GBM patients receive an intensive treatment schedule consisting of surgery, radiotherapy and chemotherapy, which only modestly extends patient survival. Therefore, preclinical studies are testing novel experimental treatments. In such preclinical studies, these treatments are administered as monotherapy in the majority of cases; conversely, in patients the new treatments are always combined with the standard of care. Most likely, this difference contributes to the failure of clinical trials despite the successes of the preclinical studies. In this methodological study, we show in detail how to implement the full clinical standard of care in preclinical GBM research. Systematically testing new treatments, including cellular immunotherapies, in combination with the clinical standard of care can result in a better translation of preclinical results to the clinic and ultimately increase patient survival.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Padrão de Cuidado , Neoplasias Encefálicas/tratamento farmacológico
2.
Br J Cancer ; 128(10): 1862-1878, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36932191

RESUMO

BACKGROUND: One-third of cancers activate endogenous synthesis of serine/glycine, and can become addicted to this pathway to sustain proliferation and survival. Mechanisms driving this metabolic rewiring remain largely unknown. METHODS: NKX2-1 overexpressing and NKX2-1 knockdown/knockout T-cell leukaemia and lung cancer cell line models were established to study metabolic rewiring using ChIP-qPCR, immunoblotting, mass spectrometry, and proliferation and invasion assays. Findings and therapeutic relevance were validated in mouse models and confirmed in patient datasets. RESULTS: Exploring T-cell leukaemia, lung cancer and neuroendocrine prostate cancer patient datasets highlighted the transcription factor NKX2-1 as putative driver of serine/glycine metabolism. We demonstrate that transcription factor NKX2-1 binds and transcriptionally upregulates serine/glycine synthesis enzyme genes, enabling NKX2-1 expressing cells to proliferate and invade in serine/glycine-depleted conditions. NKX2-1 driven serine/glycine synthesis generates nucleotides and redox molecules, and is associated with an altered cellular lipidome and methylome. Accordingly, NKX2-1 tumour-bearing mice display enhanced tumour aggressiveness associated with systemic metabolic rewiring. Therapeutically, NKX2-1-expressing cancer cells are more sensitive to serine/glycine conversion inhibition by repurposed anti-depressant sertraline, and to etoposide chemotherapy. CONCLUSION: Collectively, we identify NKX2-1 as a novel transcriptional regulator of serine/glycine synthesis addiction across cancers, revealing a therapeutic vulnerability of NKX2-1-driven cancers. Transcription factor NKX2-1 fuels cancer cell proliferation and survival by hyperactivating serine/glycine synthesis, highlighting this pathway as a novel therapeutic target in NKX2-1-positive cancers.


Assuntos
Neoplasias Pulmonares , Serina , Animais , Humanos , Camundongos , Linhagem Celular , Linhagem Celular Tumoral , Glicina , Neoplasias Pulmonares/patologia , Serina/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Eng Life Sci ; 22(2): 100-114, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35140557

RESUMO

Mammalian cells are commonly used to produce recombinant protein therapeutics, but suffer from a high cost per mg of protein produced. There is therefore great interest in improving protein yields to reduce production cost. We present an entirely novel approach to reach this goal through direct engineering of the cellular translation machinery by introducing the R98S point mutation in the catalytically essential ribosomal protein L10 (RPL10-R98S). Our data support that RPL10-R98S enhances translation levels and fidelity and reduces proteasomal activity in lymphoid Ba/F3 and Jurkat cell models. In HEK293T cells cultured in chemically defined medium, knock-in of RPL10-R98S was associated with a 1.7- to 2.5-fold increased production of four transiently expressed recombinant proteins and 1.7-fold for one out of two stably expressed proteins. In CHO-S cells, eGFP reached a 2-fold increased expression under stable but not transient conditions, but there was no production benefit for monoclonal antibodies. The RPL10-R98S associated production gain thus depends on culture conditions, cell type, and the nature of the expressed protein. Our study demonstrates the potential for using a ribosomal protein mutation for pharmaceutical protein production gains, and further research on how various factors influence RPL10-R98S phenotypes can maximize its exploitability for the mammalian protein production industry.

4.
Nat Commun ; 10(1): 2542, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186416

RESUMO

Somatic ribosomal protein mutations have recently been described in cancer, yet their impact on cellular transcription and translation remains poorly understood. Here, we integrate mRNA sequencing, ribosome footprinting, polysomal RNA sequencing and mass spectrometry datasets from a mouse lymphoid cell model to characterize the T-cell acute lymphoblastic leukemia (T-ALL) associated ribosomal RPL10 R98S mutation. Surprisingly, RPL10 R98S induces changes in protein levels primarily through transcriptional rather than translation efficiency changes. Phosphoserine phosphatase (PSPH), encoding a key serine biosynthesis enzyme, was the only gene with elevated transcription and translation leading to protein overexpression. PSPH upregulation is a general phenomenon in T-ALL patient samples, associated with elevated serine and glycine levels in xenograft mice. Reduction of PSPH expression suppresses proliferation of T-ALL cell lines and their capacity to expand in mice. We identify ribosomal mutation driven induction of serine biosynthesis and provide evidence supporting dependence of T-ALL cells on PSPH.


Assuntos
Glicina/metabolismo , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Serina/metabolismo , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Camundongos , Monoéster Fosfórico Hidrolases , Polirribossomos/genética , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteína Ribossômica L10 , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA
5.
Leukemia ; 33(4): 1055-1062, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30850735

RESUMO

Following the publication of this article, the authors noted that Dr Laura Fancello was not listed among the authors. The corrected author list is given below. Additionally, the following was not included in the author contribution statement: 'L.F. analyzed RNA sequencing data'.

6.
Leukemia ; 33(2): 319-332, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29930300

RESUMO

The R98S mutation in ribosomal protein L10 (RPL10 R98S) affects 8% of pediatric T-cell acute lymphoblastic leukemia (T-ALL) cases, and was previously described to impair cellular proliferation. The current study reveals that RPL10 R98S cells accumulate reactive oxygen species which promotes mitochondrial dysfunction and reduced ATP levels, causing the proliferation defect. RPL10 R98S mutant leukemia cells can survive high oxidative stress levels via a specific increase of IRES-mediated translation of the anti-apoptotic factor B-cell lymphoma 2 (BCL-2), mediating BCL-2 protein overexpression. RPL10 R98S selective sensitivity to the clinically available Bcl-2 inhibitor Venetoclax (ABT-199) was supported by suppression of splenomegaly and the absence of human leukemia cells in the blood of T-ALL xenografted mice. These results shed new light on the oncogenic function of ribosomal mutations in cancer, provide a novel mechanism for BCL-2 upregulation in leukemia, and highlight BCL-2 inhibition as a novel therapeutic opportunity in RPL10 R98S defective T-ALL.


Assuntos
Sítios Internos de Entrada Ribossomal , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Animais , Regulação Leucêmica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína Ribossômica L10 , Proteínas Ribossômicas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Res ; 79(2): 320-327, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30482776

RESUMO

Ribosomopathies are congenital disorders caused by mutations in ribosomal proteins (RP) or assembly factors and are characterized by cellular hypoproliferation at an early stage. Paradoxically, many of these disorders have an elevated risk to progress to hyperproliferative cancer at a later stage. In addition, somatic RP mutations have recently been identified in various cancer types, for example, the recurrent RPL10-R98S mutation in T-cell acute lymphoblastic leukemia (T-ALL) and RPS15 mutations in chronic lymphocytic leukemia (CLL). We previously showed that RPL10-R98S promotes expression of oncogenes, but also induces a proliferative defect due to elevated oxidative stress. In this study, we demonstrate that this proliferation defect is eventually rescued by RPL10-R98S mouse lymphoid cells that acquire 5-fold more secondary mutations than RPL10-WT cells. The presence of RPL10-R98S and other RP mutations also correlated with a higher mutational load in patients with T-ALL, with an enrichment in NOTCH1-activating lesions. RPL10-R98S-associated cellular oxidative stress promoted DNA damage and impaired cell growth. Expression of NOTCH1 eliminated these phenotypes in RPL10-R98S cells, in part via downregulation of PKC-θ, with no effect on RPL10-WT cells. Patients with RP-mutant CLL also demonstrated a higher mutational burden, enriched for mutations that may diminish oxidative stress. We propose that oxidative stress due to ribosome dysfunction causes hypoproliferation and cellular insufficiency in ribosomopathies and RP-mutant cancer. This drives surviving cells, potentiated by genomic instability, to acquire rescuing mutations, which ultimately promote transition to hyperproliferation. SIGNIFICANCE: Ribosomal lesions cause oxidative stress and increase mutagenesis, promoting acquisition of rescuing mutations that stimulate proliferation.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Ribossomos/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteína Ribossômica L10 , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia
9.
Oncotarget ; 8(9): 14462-14478, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28147343

RESUMO

For many years, defects in the ribosome have been associated to cancer. Recently, somatic mutations and deletions affecting ribosomal protein genes were identified in a few leukemias and solid tumor types. However, systematic analysis of all 81 known ribosomal protein genes across cancer types is lacking. We screened mutation and copy number data of respectively 4926 and 7322 samples from 16 cancer types and identified six altered genes (RPL5, RPL11, RPL23A, RPS5, RPS20 and RPSA). RPL5 was located at a significant peak of heterozygous deletion or mutated in 11% of glioblastoma, 28% of melanoma and 34% of breast cancer samples. Moreover, patients with low RPL5 expression displayed worse overall survival in glioblastoma and in one breast cancer cohort. RPL5 knockdown in breast cancer cell lines enhanced G2/M cell cycle progression and accelerated tumor progression in a xenograft mouse model. Interestingly, our data suggest that the tumor suppressor role of RPL5 is not only mediated by its known function as TP53 or c-MYC regulator. In conclusion, RPL5 heterozygous inactivation occurs at high incidence (11-34%) in multiple tumor types, currently representing the most common somatic ribosomal protein defect in cancer, and we demonstrate a tumor suppressor role for RPL5 in breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Glioblastoma/metabolismo , Haploinsuficiência , Melanoma/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Apoptose , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Genes Supressores de Tumor , Glioblastoma/patologia , Humanos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
EMBO Mol Med ; 7(4): 423-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25693964

RESUMO

Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5' untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes.


Assuntos
Núcleo Celular , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Mutação , Sinais de Localização Nuclear , Expansão das Repetições de Trinucleotídeos , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Drosophila melanogaster , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Humanos , Masculino , Camundongos , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/genética
11.
Hum Genet ; 133(11): 1359-67, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25037250

RESUMO

Xq28 microduplications of MECP2 are a prominent cause of a severe syndromic form of intellectual disability (ID) in males. Females are usually unaffected through near to complete X-inactivation of the aberrant X chromosome (skewing). In rare cases, affected females have been described due to random X-inactivation. Here, we report on two female patients carrying de novo MECP2 microduplications on their fully active X chromosomes. Both patients present with ID and additional clinical features. Mono-allelic expression confirmed complete skewing of X-inactivation. Consequently, significantly enhanced MECP2 mRNA levels were observed. We hypothesize that the cause for the complete skewing is due to a more harmful mutation on the other X chromosome, thereby forcing the MECP2 duplication to become active. However, we could not unequivocally identify such a second mutation by array-CGH or exome sequencing. Our data underline that, like in males, increased MECP2 dosage in females can contribute to ID too, which should be taken into account in diagnostics.


Assuntos
Regulação da Expressão Gênica , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína 2 de Ligação a Metil-CpG/genética , Inativação do Cromossomo X/genética , Adolescente , Criança , Hibridização Genômica Comparativa , Exoma/genética , Feminino , Duplicação Gênica , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/genética , Repetições de Microssatélites/genética , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
12.
Hum Mutat ; 35(3): 377-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357492

RESUMO

Copy number gains at Xq28 are a frequent cause of X-linked intellectual disability (XLID). Here, we report on a recurrent 0.5 Mb tandem copy number gain at distal Xq28 not including MECP2, in four male patients with nonsyndromic mild ID and behavioral problems. The genomic region is duplicated in two families and triplicated in a third reflected by more distinctive clinical features. The X-inactivation patterns in carrier females correspond well with their clinical symptoms. Our mapping data confirm that this recurrent gain is likely mediated by nonallelic homologous recombination between two directly oriented Int22h repeats. The affected region harbors eight genes of which RAB39B encoding a small GTPase, was the prime candidate since loss-of-function mutations had been linked to ID. RAB39B is expressed at stable levels in lymphocytes from control individuals, suggesting a tight regulation. mRNA levels in our patients were almost two-fold increased. Overexpression of Rab39b in mouse primary hippocampal neurons demonstrated a significant decrease in neuronal branching as well as in the number of synapses when compared with the control neurons. Taken together, we provide evidence that the increased dosage of RAB39B causes a disturbed neuronal development leading to cognitive impairment in patients with this recurrent copy number gain.


Assuntos
Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA , Deficiência Intelectual/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Bélgica , Diferenciação Celular , Criança , Mapeamento Cromossômico , Estônia , Duplicação Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Neurônios/citologia , Neurônios/metabolismo , População Branca , Inativação do Cromossomo X
13.
Hum Mutat ; 35(3): 350-5, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357517

RESUMO

The phosphatidylinositol glycan class A (PIGA) protein is a member of the glycosylphosphatidylinositol anchor pathway. Germline mutations in PIGA located at Xp22.2 are thought to be lethal in males. However, a nonsense mutation in the last coding exon was recently described in two brothers with multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2) who survived through birth likely because of the hypomorphic nature of the truncated protein, but died in their first weeks of life. Here, we report on a frameshift mutation early in the PIGA cDNA (c.76dupT; p.Y26Lfs*3) that cosegregates with the disease in a large family diagnosed with a severe syndromic form of X-linked intellectual disability. Unexpectedly, CD59 surface expression suggested the production of a shorter PIGA protein with residual functionality. We provide evidence that the second methionine at position 37 may be used for the translation of a 36 amino acids shorter PIGA. Complementation assays confirmed that this shorter PIGA cDNA was able to partially rescue the surface expression of CD59 in a PIGA-null cell line. Taken together, our data strongly suggest that the early frameshift mutation in PIGA produces a truncated hypomorph, which is sufficient to rescue the lethality in males but not the MCAHS2-like phenotype.


Assuntos
Mutação da Fase de Leitura , Genes Ligados ao Cromossomo X , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Cromossomos Humanos X/genética , Exoma , Éxons , Feminino , Mutação em Linhagem Germinativa , Humanos , Deficiência Intelectual/mortalidade , Masculino , Linhagem , Fenótipo , Análise de Sequência de DNA
14.
Hum Genet ; 132(10): 1177-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23783460

RESUMO

Loss-of-function mutations in several different neuronal pathways have been related to intellectual disability (ID). Such mutations often are found on the X chromosome in males since they result in functional null alleles. So far, microdeletions at Xq24 reported in males always have been associated with a syndromic form of ID due to the loss of UBE2A. Here, we report on overlapping microdeletions at Xq24 that do not include UBE2A or affect its expression, in patients with non-syndromic ID plus some additional features from three unrelated families. The smallest region of overlap, confirmed by junction sequencing, harbors two members of the mitochondrial solute carrier family 25, SLC25A5 and SLC25A43. However, identification of an intragenic microdeletion including SLC25A43 but not SLC25A5 in a healthy boy excluded a role for SLC25A43 in cognition. Therefore, our findings point to SLC25A5 as a novel gene for non-syndromic ID. This highly conserved gene is expressed ubiquitously with high levels in cortex and hippocampus, and a presumed role in mitochondrial exchange of ADP/ATP. Our data indicate that SLC25A5 is involved in memory formation or establishment, which could add mitochondrial processes to the wide array of pathways that regulate normal cognitive functions.


Assuntos
Translocador 2 do Nucleotídeo Adenina/metabolismo , Deleção Cromossômica , Cromossomos Humanos X/genética , Deficiência Intelectual/genética , Mitocôndrias/metabolismo , Translocador 2 do Nucleotídeo Adenina/genética , Elementos Alu , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Mitocôndrias/genética , Dados de Sequência Molecular , Linhagem , Inativação do Cromossomo X
15.
PLoS One ; 8(5): e64144, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675524

RESUMO

Members of the Nuclear eXport Factor (NXF) family are involved in the export of mRNA from the nucleus to the cytoplasm, or hypothesized to play a role in transport of cytoplasmic mRNA. We previously reported on the loss of NXF5 in a male patient with a syndromic form of intellectual disability. To study the functional role of NXF5 we identified the mouse counterpart. Based on synteny, mouse Nxf2 is the ortholog of human NXF5. However, we provide several lines of evidence that mouse Nxf7 is the actual functional equivalent of NXF5. Both Nxf7 and NXF5 are predominantly expressed in the brain, show cytoplasmic localization, and present as granules in neuronal dendrites suggesting a role in cytoplasmic mRNA metabolism in neurons. Nxf7 was primarily detected in the pyramidal cells of the hippocampus and in layer V of the cortex. Similar to human NXF2, mouse Nxf2 is highly expressed in testis and shows a nuclear localization. Interestingly, these findings point to a different evolutionary path for both NXF genes in human and mouse. We thus generated and validated Nxf7 knockout mice, which were fertile and did not present any gross anatomical or morphological abnormalities. Expression profiling in the hippocampus and the cortex did not reveal significant changes between wild-type and Nxf7 knockout mice. However, impaired spatial memory was observed in these KO mice when evaluated in the Morris water maze test. In conclusion, our findings provide strong evidence that mouse Nxf7 is the functional counterpart of human NXF5, which might play a critical role in mRNA metabolism in the brain.


Assuntos
Córtex Cerebral/metabolismo , Efeito Fundador , Hipocampo/metabolismo , Deficiência Intelectual/genética , Neurônios/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Ligação a RNA/genética , Transporte Ativo do Núcleo Celular/genética , Animais , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/patologia , Hipocampo/ultraestrutura , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Aprendizagem em Labirinto , Memória , Camundongos , Camundongos Knockout , Neurônios/patologia , Neurônios/ultraestrutura , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Especificidade de Órgãos , Proteínas de Ligação a RNA/metabolismo , Testículo/metabolismo
16.
Nucleic Acids Res ; 40(22): 11477-89, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23066103

RESUMO

Telomere position effect (TPE) is the influence of telomeres on subtelomeric epigenetic marks and gene expression. Previous studies suggested that TPE depends on genetic background. As these analyses were performed on different chromosomes, cell types and species, it remains unclear whether TPE represents a chromosome-rather than genetic background-specific regulation. We describe the development of a Linear Human Artificial Chromosome (L-HAC) as a new tool for telomere studies. The L-HAC was generated through the Cre-loxP-mediated addition of telomere ends to an existing circular HAC (C-HAC). As it can be transferred to genetically distinct cell lines and animal models the L-HAC enables the study of TPE in an unprecedented manner. The HAC was relocated to four telomerase-positive cell lines via microcell-mediated chromosome transfer and subsequently to mice via blastocyst injection of L-HAC(+)-ES-cells. We could show consistent genetic background-dependent adaptation of telomere length and telomere-associated de novo subtelomeric DNA methylation in mouse ES-R1 cells as well as in mice. Expression of the subtelomeric neomycin gene was inversely correlated with telomere length and subtelomeric methylation. We thus provide a new tool for functional telomere studies and provide strong evidence that telomere length, subtelomeric chromatin marks and expression of subtelomeric genes are genetic background dependent.


Assuntos
Efeitos da Posição Cromossômica , Cromossomos Artificiais Humanos , Homeostase do Telômero , Telômero/fisiologia , Animais , Células Cultivadas , Cromatina/metabolismo , Cricetinae , Metilação de DNA , Humanos , Camundongos , Camundongos Endogâmicos BALB C
17.
Am J Hum Genet ; 91(2): 252-64, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22840365

RESUMO

We previously reported on nonrecurrent overlapping duplications at Xp11.22 in individuals with nonsyndromic intellectual disability (ID) harboring HSD17B10, HUWE1, and the microRNAs miR-98 and let-7f-2 in the smallest region of overlap. Here, we describe six additional individuals with nonsyndromic ID and overlapping microduplications that segregate in the families. High-resolution mapping of the 12 copy-number gains reduced the minimal duplicated region to the HUWE1 locus only. Consequently, increased mRNA levels were detected for HUWE1, but not HSD17B10. Marker and SNP analysis, together with identification of two de novo events, suggested a paternally derived intrachromosomal duplication event. In four independent families, we report on a polymorphic 70 kb recurrent copy-number gain, which harbors part of HUWE1 (exon 28 to 3' untranslated region), including miR-98 and let-7f-2. Our findings thus demonstrate that HUWE1 is the only remaining dosage-sensitive gene associated with the ID phenotype. Junction and in silico analysis of breakpoint regions demonstrated simple microhomology-mediated rearrangements suggestive of replication-based duplication events. Intriguingly, in a single family, the duplication was generated through nonallelic homologous recombination (NAHR) with the use of HUWE1-flanking imperfect low-copy repeats, which drive this infrequent NAHR event. The recurrent partial HUWE1 copy-number gain was also generated through NAHR, but here, the homologous sequences used were identified as TcMAR-Tigger DNA elements, a template that has not yet been reported for NAHR. In summary, we showed that an increased dosage of HUWE1 causes nonsyndromic ID and demonstrated that the Xp11.22 region is prone to recombination- and replication-based rearrangements.


Assuntos
Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA/genética , Rearranjo Gênico/genética , Deficiência Intelectual/genética , Ubiquitina-Proteína Ligases/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Hibridização Genômica Comparativa , Biologia Computacional , Replicação do DNA/genética , Duplicação Gênica/genética , Humanos , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética , Proteínas Supressoras de Tumor
18.
Am J Hum Genet ; 85(6): 809-22, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20004760

RESUMO

We report on the identification of a 0.3 Mb inherited recurrent but variable copy-number gain at Xq28 in affected males of four unrelated families with X-linked mental retardation (MR). All aberrations segregate with the disease in the families, and the carrier mothers show nonrandom X chromosome inactivation. Tiling Xq28-region-specific oligo array revealed that all aberrations start at the beginning of the low copy repeat LCR-K1, at position 153.20 Mb, and end just distal to LCR-L2, at 153.54 Mb. The copy-number gain always includes 18 annotated genes, of which RPL10, ATP6AP1 and GDI1 are highly expressed in brain. From these, GDI1 is the most likely candidate gene. Its copy number correlates with the severity of clinical features, because it is duplicated in one family with nonsyndromic moderate MR, is triplicated in males from two families with mild MR and additional features, and is present in five copies in a fourth family with a severe syndromic form of MR. Moreover, expression analysis revealed copy-number-dependent increased mRNA levels in affected patients compared to control individuals. Interestingly, analysis of the breakpoint regions suggests a recombination mechanism that involves two adjacent but different sets of low copy repeats. Taken together, our data strongly suggest that an increased expression of GDI1 results in impaired cognition in a dosage-dependent manner. Moreover, these data also imply that a copy-number gain of an individual gene present in the larger genomic aberration that leads to the severe MECP2 duplication syndrome can of itself result in a clinical phenotype as well.


Assuntos
Cromossomos Humanos X , Dosagem de Genes , Deficiência Intelectual/genética , Recombinação Genética , Adulto , Encéfalo/metabolismo , Criança , Pré-Escolar , Aberrações Cromossômicas , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Modelos Genéticos , Hibridização de Ácido Nucleico , Linhagem , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...