Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thromb Res ; 240: 109045, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834002

RESUMO

INTRODUCTION: Thrombin generation assays (TGAs) assess the overall functionality of the hemostatic system and thereby provide a reflection of the hemostatic capacity of patients with disorders in this system. Currently, four (semi-)automated TGA platforms are available: the Calibrated Automated Thrombogram, Nijmegen Hemostasis Assay, ST Genesia and Ceveron s100. In this study, we compared their performance for detecting patients with congenital single coagulation factor deficiencies. MATERIALS AND METHODS: Pooled patient samples, healthy control samples and normal pooled plasma were tested on all four platforms, using the available reagents that vary in tissue factor and phospholipid concentrations. The TGA parameters selected for analysis were peak height and thrombin potential. Results were normalized by using the calculated mean of healthy controls and a correction for between-run variation. Outcomes were presented as relative values, with the mean of healthy controls standardized to 100 %. RESULTS: Across all platforms and reagents used, thrombin potentials and peak heights of samples with coagulation factor deficiencies were lower than those of healthy controls. Reagents designed for bleeding tendencies yielded the lowest values on all platforms (relative median peak height 19-32 %, relative median thrombin potential 19-45 %). Samples representing more severe coagulation factor deficiencies generally exhibited lower relative peak heights and thrombin potentials. CONCLUSIONS: Thrombin generation assays prove effective in differentiating single coagulation factor deficient samples from healthy controls, with modest discrepancies observed between the platforms. Reagents designed for assessing bleeding tendencies, featuring the lowest tissue factor and phospholipid concentrations, emerged as the most suitable option for detecting coagulation factor deficiencies.


Assuntos
Trombina , Humanos , Trombina/metabolismo , Trombina/análise , Trombina/biossíntese , Testes de Coagulação Sanguínea/métodos , Transtornos de Proteínas de Coagulação/sangue , Transtornos de Proteínas de Coagulação/diagnóstico , Hemostasia
2.
Haemophilia ; 25(6): 1073-1082, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31469483

RESUMO

INTRODUCTION: Deficiencies of plasminogen and plasminogen activator inhibitor type 1 (PAI-1) are rare disorders of fibrinolysis. Current laboratory assays for analysis of activity of plasminogen and PAI-1 do not provide an accurate correlation with clinical phenotype. METHODS: The Nijmegen Hemostasis Assay (NHA) was used to simultaneously measure thrombin and plasmin generation in 5 patients with plasminogen deficiency (PLGD) and 10 patients with complete PAI-1 deficiency. Parameters analysed included: lag time ratio, thrombin peak time ratio, thrombin peak height, thrombin potential (AUC), fibrin lysis time, plasmin peak height and plasmin potential. Parameters were expressed as a percentage compared to a reference value of 53 healthy normal controls. RESULTS: Patients with PLGD demonstrated a short lag time and thrombin peak time, with normal thrombin peak height but an increased AUC. Plasmin generation was able to be detected in only one (23% plasminogen activity) of the five PLGD patients. All ten PAI-1 deficient patients demonstrated a short lag and thrombin peak time, low thrombin peak height with normal AUC. Plasmin generation revealed an increased plasmin peak and plasmin potential; interestingly, there was a large variation between individual patients despite all patients having the same homozygous defect. CONCLUSION: Patients with either PLGD or PAI-1 deficiency show distinct abnormalities in plasmin and thrombin generation in the NHA. The differences observed in the propagation phase of thrombin generation may be explained by plasmin generation. These results suggest that disorders of fibrinolysis also influence coagulation and a global assay measuring both activities may better correlate with clinical outcome.


Assuntos
Transtornos de Proteínas de Coagulação/metabolismo , Fibrinolisina/biossíntese , Transtornos Hemorrágicos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/deficiência , Trombina/biossíntese , Adulto , Criança , Transtornos de Proteínas de Coagulação/genética , Feminino , Genótipo , Transtornos Hemorrágicos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo
3.
J Sci Med Sport ; 20(2): 202-207, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27036711

RESUMO

OBJECTIVES: Exercise induces changes in haemostatic parameters and core body temperature (CBT). We aimed to assess whether exercise-induced elevations in CBT induce pro-thrombotic changes in a dose-dependent manner. DESIGN: Observational study. METHODS: CBT and haemostatic responses were measured in 62 participants of a 15-km road race at baseline and immediately after finishing. As haemostasis assays are routinely performed at 37°C, we corrected the assay temperature for the individual's actual CBT at baseline and finish in a subgroup of n=25. RESULTS: All subjects (44±11 years, 69% male) completed the race at a speed of 12.1±1.8km/h. CBT increased significantly from 37.6±0.4°C to 39.4±0.8°C (p<0.001). Post-exercise, haemostatic activity was increased, as expressed by accelerated thrombin generation and an attenuated plasmin response. Synchronizing assay temperature to the subjects' actual CBT resulted in additional differences and stronger acceleration of thrombin generation parameters. CONCLUSIONS: This study demonstrates that exercise induces a prothrombotic state, which might be partially dependent on the magnitude of the exercise-induced CBT rise. Synchronizing the assay temperature to approximate the subject's CBT is essential to obtain more accurate insight in the haemostatic balance during thermoregulatory challenging situations. Finally, this study shows that short-lasting exposure to a CBT of 41.2°C does not result in clinical symptoms of severe coagulation. We therefore hypothesize that prolonged exposure to a high CBT or an individual-specific CBT threshold needs to be exceeded before derailment of the haemostatic balance occurs.


Assuntos
Coagulação Sanguínea/fisiologia , Regulação da Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Fibrinolisina/metabolismo , Trombina/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Corrida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...