Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(12): e1011109, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38134228

RESUMO

The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.


Assuntos
MicroRNAs , Distrofia Miotônica , Animais , Processamento Alternativo/genética , Caenorhabditis elegans/genética , MicroRNAs/genética , Distrofia Miotônica/genética , Isoformas de Proteínas/genética
2.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849877

RESUMO

Muscleblind-like splicing regulators (MBNLs) are RNA-binding factors that have an important role in developmental processes. Dysfunction of these factors is a key contributor of different neuromuscular degenerative disorders, including Myotonic Dystrophy type 1 (DM1). Since DM1 is a multisystemic disease characterized by symptoms resembling accelerated aging, we asked which cellular processes do MBNLs regulate that make them necessary for normal lifespan. By utilizing the model organism Caenorhabditis elegans, we found that loss of MBL-1 (the sole ortholog of mammalian MBNLs), which is known to be required for normal lifespan, shortens lifespan by decreasing the activity of p38 MAPK/PMK-1 as well as the function of transcription factors ATF-7 and SKN-1. Furthermore, we show that mitochondrial stress caused by the knockdown of mitochondrial electron transport chain components promotes the longevity of mbl-1 mutants in a partially PMK-1-dependent manner. Together, the data establish a mechanism of how DM1-associated loss of muscleblind affects lifespan. Furthermore, this study suggests that mitochondrial stress could alleviate symptoms caused by the dysfunction of muscleblind splicing factor, creating a potential approach to investigate for therapy.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Longevidade/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a RNA/genética
3.
EMBO J ; 40(14): e106536, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34009673

RESUMO

Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.


Assuntos
Instabilidade Cromossômica/genética , Cromossomos/genética , Mutação/genética , Spliceossomos/genética , Sequência de Aminoácidos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Íntrons/genética
4.
PLoS Genet ; 13(5): e1006824, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28549066

RESUMO

Cellular homeostasis of the minor spliceosome is regulated by a negative feed-back loop that targets U11-48K and U11/U12-65K mRNAs encoding essential components of the U12-type intron-specific U11/U12 di-snRNP. This involves interaction of the U11 snRNP with an evolutionarily conserved splicing enhancer giving rise to unproductive mRNA isoforms. In the case of U11/U12-65K, this mechanism controls the length of the 3' untranslated region (3'UTR). We show that this process is dynamically regulated in developing neurons and some other cell types, and involves a binary switch between translation-competent mRNAs with a short 3'UTR to non-productive isoforms with a long 3'UTR that are retained in the nucleus or/and spliced to the downstream amylase locus. Importantly, the choice between these alternatives is determined by alternative terminal exon definition events regulated by conserved U12- and U2-type 5' splice sites as well as sequence signals used for pre-mRNA cleavage and polyadenylation. We additionally show that U11 snRNP binding to the U11/U12-65K mRNA species with a long 3'UTR is required for their nuclear retention. Together, our studies uncover an intricate molecular circuitry regulating the abundance of a key spliceosomal protein and shed new light on the mechanisms limiting the export of non-productively spliced mRNAs from the nucleus to the cytoplasm.


Assuntos
Processamento Alternativo , Núcleo Celular/metabolismo , Éxons , Ribonucleoproteínas Nucleares Pequenas/genética , Transporte Ativo do Núcleo Celular , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo
5.
RNA Biol ; 12(11): 1256-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26479860

RESUMO

Many splicing regulators bind to their own pre-mRNAs to induce alternative splicing that leads to formation of unstable mRNA isoforms. This provides an autoregulatory feedback mechanism that regulates the cellular homeostasis of these factors. We have described such an autoregulatory mechanism for two core protein components, U11-48K and U11/U12-65K, of the U12-dependent spliceosome. This regulatory system uses an atypical splicing enhancer element termed USSE (U11 snRNP-binding splicing enhancer), which contains two U12-type consensus 5' splice sites (5'ss). Evolutionary analysis of the USSE element from a large number of animal and plant species indicate that USSE sequence must be located 25-50 nt downstream from the target 3' splice site (3'ss). Together with functional evidence showing a loss of USSE activity when this distance is reduced and a requirement for RS-domain of U11-35K protein for 3'ss activation, our data suggests that U11 snRNP bound to USSE uses exon definition interactions for regulating alternative splicing. However, unlike standard exon definition where the 5'ss bound by U1 or U11 will be subsequently activated for splicing, the USSE element functions similarly as an exonic splicing enhancer and is involved only in upstream splice site activation but does not function as a splicing donor. Additionally, our evolutionary and functional data suggests that the function of the 5'ss duplication within the USSE elements is to allow binding of two U11/U12 di-snRNPs that stabilize each others' binding through putative mutual interactions.


Assuntos
Processamento Alternativo , Evolução Molecular , Éxons , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Elementos Facilitadores Genéticos , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Elementos de Resposta , Ribonucleoproteínas Nucleares Pequenas/química , Alinhamento de Sequência
6.
Mol Cell ; 37(6): 821-33, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20347424

RESUMO

Alternative pre-mRNA splicing is typically regulated by specific protein factors that recognize unique sequence elements in pre-mRNA and affect, directly or indirectly, nearby splice site usage. We show that 5' splice site sequences (5'ss) of U12-type introns, when repeated in tandem, form a U11 snRNP-binding splicing enhancer, USSE. Binding of U11 to the USSE regulates alternative splicing of U2-type introns by activating an upstream 3'ss. The U12-type 5'ss-like sequences within the USSE have a regulatory role and do not function as splicing donors. USSEs, present both in animal and plant genes encoding the U11/U12 di-snRNP-specific 48K and 65K proteins, create sensitive switches that respond to intracellular levels of functional U11 snRNP and alter the stability of 48K and 65K mRNAs. We conclude that U11 functions not only in 5'ss recognition in constitutive splicing, but also as an activator of U2-dependent alternative splicing and as a regulator of the U12-dependent spliceosome.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Sequência Conservada , Citoplasma/metabolismo , Evolução Molecular , Humanos , Íntrons , Dados de Sequência Molecular , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética
7.
Int J Syst Evol Microbiol ; 55(Pt 4): 1457-1464, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16014466

RESUMO

A group of 21 bacterial strains was isolated from samples of biofilm formation in the Servilia tomb (necropolis of Carmona, Spain) and the Saint-Catherine chapel (castle at Herberstein, Austria). A polyphasic taxonomic study of these isolates, including morphological, biochemical and chemotaxonomic characterization, rep-PCR fingerprinting, 16S rRNA gene sequence analysis, DNA base ratio and DNA-DNA relatedness studies, allocated them to the genus Arthrobacter. The isolates represent six novel species, for which the names Arthrobacter castelli sp. nov., Arthrobacter monumenti sp. nov., Arthrobacter parietis sp. nov., Arthrobacter pigmenti sp. nov., Arthrobacter tecti sp. nov. and Arthrobacter tumbae sp. nov. are proposed. The respective type strains are LMG 22283(T) (=DSM 16402(T)), LMG 19502(T) (=DSM 16405(T)), LMG 22281(T) (=DSM 16404(T)), LMG 22284(T) (=DSM 16403(T)), LMG 22282(T) (=DSM 16407(T)) and LMG 19501(T) (=DSM 16406(T)).


Assuntos
Arthrobacter/classificação , Arthrobacter/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Pinturas , Arthrobacter/química , Arthrobacter/genética , Áustria , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/análise , DNA Ribossômico/análise , Genes de RNAr , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha
8.
Int J Syst Evol Microbiol ; 54(Pt 5): 1537-1541, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15388707

RESUMO

Three strains showing highly similar (GTG)5-PCR patterns were isolated from a heavily damaged mural painting at the Saint-Catherine chapel (Castle Herberstein, Austria). On the basis of 16S rRNA gene sequence similarity, the strains were attributed to Brevibacterium, with Brevibacterium casei (96.7 %), Brevibacterium iodinum (96.7 %) and Brevibacterium linens (96.6 %) as the closest related species. Chemotaxonomic data [peptidoglycan contains meso-diaminopimelic acid; mycolic acids absent; MK-8(H2) as the major menaquinone; polar lipids phosphatidylglycerol and diphosphatidylglycerol present; anteiso-C(15 : 0) and anteiso-C(17 : 0) as major fatty acids] supported the affiliation of the strains to the genus Brevibacterium. Additional physiological and biochemical tests confirmed the taxonomic position of the strains and allowed phenotypic differentiation from Brevibacterium species with validly published names. The isolates from the mural painting, therefore, represent a novel species, for which the name Brevibacterium picturae sp. nov. is proposed, with LMG 22061T (= DSM 16132T) as the type strain.


Assuntos
Brevibacterium/classificação , Brevibacterium/isolamento & purificação , Pinturas , Áustria , Composição de Bases , Brevibacterium/química , Brevibacterium/genética , Cardiolipinas/análise , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Ácido Diaminopimélico/análise , Enzimas/análise , Ácidos Graxos/análise , Genes de RNAr , Dados de Sequência Molecular , Ácidos Micólicos/análise , Peptidoglicano/análise , Fosfatidilgliceróis/análise , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...