Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 4: 38, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102112

RESUMO

Neurological diseases associated with neuronal death are also accompanied by axonal denervation of connected brain regions. In these areas, denervation leads to a decrease in afferent drive, which may in turn trigger active central nervous system (CNS) circuitry rearrangement. This rewiring process is important therapeutically, since it can partially recover functions and can be further enhanced using modern rehabilitation strategies. Nevertheless, the cellular mechanisms of brain rewiring are not fully understood. We recently reported a mechanism by which neurons remodel their local connectivity under conditions of network-perturbance: hippocampal pyramidal cells can extend spine head protrusions (SHPs), which reach out toward neighboring terminals and form new synapses. Since this form of activity-dependent rewiring is observed only on some spines, we investigated the required conditions. We speculated, that the actin-associated protein synaptopodin, which is involved in several synaptic plasticity mechanisms, could play a role in the formation and/or stabilization of SHPs. Using hippocampal slice cultures, we found that ~70 % of spines with protrusions in CA1 pyramidal neurons contained synaptopodin. Analysis of synaptopodin-deficient neurons revealed that synaptopodin is required for the stability but not the formation of SHPs. The effects of synaptopodin could be linked to its role in Ca(2+) homeostasis, since spines with protrusions often contained ryanodine receptors and synaptopodin. Furthermore, disrupting Ca(2+) signaling shortened protrusion lifetime. By transgenically reintroducing synaptopodin on a synaptopodin-deficient background, SHP stability could be rescued. Overall, we show that synaptopodin increases the stability of SHPs, and could potentially modulate the rewiring of microcircuitries by making synaptic reorganization more efficient.


Assuntos
Cálcio/metabolismo , Espinhas Dendríticas/fisiologia , Líquido Intracelular/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Sinaptofisina/metabolismo , Animais , Animais Recém-Nascidos , Espinhas Dendríticas/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Imageamento Tridimensional , Técnicas In Vitro , Indóis/farmacologia , Líquido Intracelular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Sinaptofisina/genética , Sinaptofisina/farmacologia , Tetrodotoxina/farmacologia
2.
Eur J Neurosci ; 40(5): 2766-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24925283

RESUMO

CX 546, an allosteric positive modulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic glutamate receptors (AMPARs), belongs to a drug class called ampakines. These compounds have been shown to enhance long-term potentiation (LTP), a cellular model of learning and memory, and improve animal learning task performance, and have augmented cognition in neurodegenerative patients. However, the chronic effect of CX546 on synaptic structures has not been examined. The structure and integrity of dendritic spines are thought to play a role in learning and memory, and their abnormalities have been implicated in cognitive disorders. In addition, their structural plasticity has been shown to be important for cognitive function, such that dendritic spine remodeling has been proposed as the morphological correlate for LTP. Here, we tested the effect of CX546 on dendritic spine remodeling following long-term treatment. We found that, with prolonged CX546 treatment, organotypic hippocampal slice cultures showed a significant reduction in CA3-CA1 excitatory synapse and spine density. Electrophysiological approaches revealed that the CA3-CA1 circuitry compensates for this synapse loss by increasing synaptic efficacy through enhancement of presynaptic release probability. CX546-treated slices showed prolonged and enhanced potentiation upon LTP induction. Furthermore, structural plasticity, namely spine head enlargement, was also more pronounced after CX546 treatment. Our results suggest a concordance of functional and structural changes that is enhanced with prolonged CX546 exposure. Thus, the improved cognitive ability of patients receiving ampakine treatment may result from the priming of synapses through increases in the structural plasticity and functional reliability of hippocampal synapses.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Dioxanos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Piperidinas/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Dioxóis , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores de AMPA/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
3.
Adv Exp Med Biol ; 961: 397-410, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23224898

RESUMO

The pH milieu of the central and peripheral nervous systems is an important determinant of neuronal excitability, function, and survival. In mammals, neural acid-base homeostasis is coordinately regulated by ion transporters belonging to the Na(+)/H(+) exchanger (NHE) and bicarbonate transporter gene families. However, the relative contributions of individual isoforms within the respective families are not fully understood. This report focuses on the NHE family, specifically the plasma membrane-type NHE5 which is preferentially transcribed in brain, but the distribution of the native protein has not been extensively characterized. To this end, we generated a rabbit polyclonal antibody that specifically recognizes NHE5. In both central (cortex, hippocampus) and peripheral (superior cervical ganglia, SCG) nervous tissue of mice, NHE5 immunostaining was punctate and highly concentrated in the somas and to lesser amounts in the dendrites of neurons. Very little signal was detected in axons. Similarly, in primary cultures of differentiated SCG neurons, NHE5 localized predominantly to vesicles in the somatodendritic compartment, though some immunostaining was also evident in punctate vesicles along the axons. NHE5 was also detected predominantly in intracellular vesicles of cultured SCG glial cells. Dual immunolabeling of SCG neurons showed that NHE5 did not colocalize with markers for early endosomes (EEA1) or synaptic vesicles (synaptophysin), but did partially colocalize with the transferrin receptor, a marker of recycling endosomes. Collectively, these data suggest that NHE5 partitions into a unique vesicular pool in neurons that shares some characteristics of recycling endosomes where it may serve as an important regulated store of functional transporters required to maintain cytoplasmic pH homeostasis.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Endossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Encéfalo/citologia , Células Cultivadas , Endossomos/genética , Concentração de Íons de Hidrogênio , Camundongos , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia , Coelhos , Trocadores de Sódio-Hidrogênio/genética , Vesículas Sinápticas/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Eur J Neurosci ; 35(12): 1908-16, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22708602

RESUMO

Most excitatory transmission in the brain is mediated by the AMPA receptor subtype of the ionotropic glutamate receptors. In many neurological diseases, synapse structure and AMPA receptor function are altered, thus making AMPA receptors potential therapeutic targets for clinical intervention. The work summarized in this review suggests a link between AMPA receptor function and debilitating neuropathologies, and discusses the current state of therapies targeting AMPA receptors in four diseases. In amyotrophic lateral sclerosis, AMPA receptors allow cytotoxic levels of calcium into neurons, leading to motor neuron death. Likewise, in some epilepsies, overactivation of AMPA receptors leads to neuron damage. The same is true for ischemia, where oxygen deprivation leads to excitotoxicity. Conversely, Alzheimer's disease is characterized by decreased AMPA activation and synapse loss. Unfortunately, many clinical studies have had limited success by directly targeting AMPA receptors in these diseases. We also discuss how the use of AMPA receptor modulators, commonly known as ampakines, in neurological diseases initially seemed promising in animal studies, but mostly ineffective in clinical trials. We propose that indirectly affecting AMPA receptors, such as by modulating transmembrane AMPA receptor regulatory proteins or, more generally, by regulating glutamatergic transmission, may provide new therapeutic potential for neurological disorders.


Assuntos
Doenças do Sistema Nervoso/tratamento farmacológico , Receptores de AMPA/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Humanos , Camundongos , Terapia de Alvo Molecular/tendências , Neurotransmissores/farmacologia , Neurotransmissores/uso terapêutico , Ratos , Receptores de AMPA/agonistas , Receptores de AMPA/fisiologia
5.
Glia ; 60(7): 1067-77, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22488940

RESUMO

Accumulating evidence supports the idea that synapses are tripartite, whereby perisynaptic astrocytes modulate both pre- and postsynaptic function. Although some of these features have been uncovered by using electrophysiological methods, less is known about the structural interplay between synapses and glial processes. Here, we investigated how astrocytes govern the plasticity of individual hippocampal dendritic spines. Recently, we uncovered that a subgroup of innervated dendritic spines is able to undergo remodeling by extending spine head protrusions (SHPs) toward neighboring functional presynaptic boutons, resulting in new synapses. Although glutamate serves as a trigger, how this behavior is regulated is unknown. As astrocytes control extracellular glutamate levels through their high-affinity uptake transporters, together with their privileged access to synapses, we investigated a role for astrocytes in SHP formation. Using time-lapse confocal microscopy, we found that the volume overlap between spines and astrocytic processes decreased during the formation of SHPs. Focal application of glutamate also reduced spine-astrocyte overlap and induced SHPs. Importantly, SHP formation was prevented by blocking glial glutamate transporters, suggesting that glial control of extracellular glutamate is important for SHP-mediated plasticity of spines. Hence, the dynamic changes of both spines and astrocytes can rapidly modify synaptic connectivity.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Sinapses/metabolismo , Animais , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Microscopia Confocal , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia
6.
J Physiol ; 589(17): 4353-64, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21768266

RESUMO

A key feature at excitatory synapses is the remodelling of dendritic spines, which in conjunction with receptor trafficking modifies the efficacy of neurotransmission. Here we investigated whether activation of cholinergic receptors, which can modulate synaptic plasticity, also mediates changes in dendritic spine structure. Using confocal time-lapse microscopy in mouse slice cultures we found that brief activation of muscarinic receptors induced the emergence of fine filopodia from spine heads in all CA1 pyramidal cells examined. This response was widespread occurring in 48% of imaged spines, appeared within minutes, was reversible, and was blocked by atropine. Electron microscopic analyses showed that the spine head filopodia (SHFs) extend along the presynaptic bouton. In addition, the decay time of miniature EPSCs was longer after application of the muscarinic acetylcholine receptor agonist methacholine (MCh). Both morphological and electrophysiological changes were reduced by preventing microtubule polymerization with nocodazole. This extension of SHFs during cholinergic receptor activation represents a novel structural form of subspine plasticity that may regulate synaptic properties by fine-tuning interactions between presynaptic boutons and dendritic spines.


Assuntos
Pseudópodes , Células Piramidais , Animais , Espinhas Dendríticas , Hipocampo , Receptores Muscarínicos , Sinapses , Transmissão Sináptica
7.
J Biol Chem ; 284(18): 12410-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19258322

RESUMO

Intersectin-short (intersectin-s) is a multimodule scaffolding protein functioning in constitutive and regulated forms of endocytosis in non-neuronal cells and in synaptic vesicle (SV) recycling at the neuromuscular junction of Drosophila and Caenorhabditis elegans. In vertebrates, alternative splicing generates a second isoform, intersectin-long (intersectin-l), that contains additional modular domains providing a guanine nucleotide exchange factor activity for Cdc42. In mammals, intersectin-s is expressed in multiple tissues and cells, including glia, but excluded from neurons, whereas intersectin-l is a neuron-specific isoform. Thus, intersectin-I may regulate multiple forms of endocytosis in mammalian neurons, including SV endocytosis. We now report, however, that intersectin-l is localized to somatodendritic regions of cultured hippocampal neurons, with some juxtanuclear accumulation, but is excluded from synaptophysin-labeled axon terminals. Consistently, intersectin-l knockdown (KD) does not affect SV recycling. Instead intersectin-l co-localizes with clathrin heavy chain and adaptor protein 2 in the somatodendritic region of neurons, and its KD reduces the rate of transferrin endocytosis. The protein also co-localizes with F-actin at dendritic spines, and intersectin-l KD disrupts spine maturation during development. Our data indicate that intersectin-l is indeed an important regulator of constitutive endocytosis and neuronal development but that it is not a prominent player in the regulated endocytosis of SVs.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Espinhas Dendríticas/metabolismo , Endocitose/fisiologia , Hipocampo/metabolismo , Vesículas Sinápticas/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Processamento Alternativo/fisiologia , Animais , Axônios/metabolismo , Caenorhabditis elegans , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína/fisiologia , Ratos , Vesículas Sinápticas/genética
8.
J Cell Sci ; 121(Pt 16): 2768-81, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18664496

RESUMO

Rabs and Arfs/Arls are Ras-related small GTPases of particular relevance to membrane trafficking. It is thought that these proteins regulate specific pathways through interactions with coat, motor, tether and SNARE proteins. We screened a comprehensive list of Arf/Arl/Rab proteins, previously identified on purified Golgi membranes by a proteomics approach (37 in total), for Golgi or intra-Golgi localization, dominant-negative and overexpression phenotypes. Further analysis of two of these proteins, Rab18 and Rab43, strongly indicated roles in ER-Golgi trafficking. Rab43-T32N redistributed Golgi elements to ER exit sites without blocking trafficking of the secretory marker VSVG-GFP from ER to cell surface. Wild-type Rab43 redistributes the p150(Glued) subunit of dynactin, consistent with a specific role in regulating association of pre-Golgi intermediates with microtubules. Overexpression of wild-type GFP-Rab18 or incubation with any of three siRNAs directed against Rab18 severely disrupts the Golgi complex and reduces secretion of VSVG. Rab18 mutants specifically enhance retrograde Golgi-ER transport of the COPI-independent cargo beta-1,4-galactosyltransferase (Galtase)-YFP but not the COPI-dependent cargo p58-YFP from the Golgi to ER in a photobleach assay. Rab18-S22N also potentiated brefeldin-A-induced ER-Golgi fusion. This study is the first comprehensive application of large-scale proteomics to the cell biology of small GTPases of the secretory pathway.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Proteínas Mutantes/fisiologia , Transporte Proteico/fisiologia , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...