Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2247): 20220156, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36970822

RESUMO

Building on a strong foundation of philosophy, theory, methods and computation over the past three decades, Bayesian approaches are now an integral part of the toolkit for most statisticians and data scientists. Whether they are dedicated Bayesians or opportunistic users, applied professionals can now reap many of the benefits afforded by the Bayesian paradigm. In this paper, we touch on six modern opportunities and challenges in applied Bayesian statistics: intelligent data collection, new data sources, federated analysis, inference for implicit models, model transfer and purposeful software products. This article is part of the theme issue 'Bayesian inference: challenges, perspectives, and prospects'.

2.
PeerJ Comput Sci ; 7: e544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141881

RESUMO

Virtual reality (VR) technology is an emerging tool that is supporting the connection between conservation research and public engagement with environmental issues. The use of VR in ecology consists of interviewing diverse groups of people while they are immersed within a virtual ecosystem to produce better information than more traditional surveys. However, at present, the relatively high level of expertise in specific programming languages and disjoint pathways required to run VR experiments hinder their wider application in ecology and other sciences. We present R2VR, a package for implementing and performing VR experiments in R with the aim of easing the learning curve for applied scientists including ecologists. The package provides functions for rendering VR scenes on web browsers with A-Frame that can be viewed by multiple users on smartphones, laptops, and VR headsets. It also provides instructions on how to retrieve answers from an online database in R. Three published ecological case studies are used to illustrate the R2VR workflow, and show how to run a VR experiments and collect the resulting datasets. By tapping into the popularity of R among ecologists, the R2VR package creates new opportunities to address the complex challenges associated with conservation, improve scientific knowledge, and promote new ways to share better understanding of environmental issues. The package could also be used in other fields outside of ecology.

3.
Sci Data ; 8(1): 84, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727570

RESUMO

This paper describes benthic coral reef community composition point-based field data sets derived from georeferenced photoquadrats using machine learning. Annually over a 17 year period (2002-2018), data were collected using downward-looking photoquadrats that capture an approximately 1 m2 footprint along 100 m-1500 m transect surveys distributed along the reef slope and across the reef flat of Heron Reef (28 km2), Southern Great Barrier Reef, Australia. Benthic community composition for the photoquadrats was automatically interpreted through deep learning, following initial manual calibration of the algorithm. The resulting data sets support understanding of coral reef biology, ecology, mapping and dynamics. Similar methods to derive the benthic data have been published for seagrass habitats, however here we have adapted the methods for application to coral reef habitats, with the integration of automatic photoquadrat analysis. The approach presented is globally applicable for various submerged and benthic community ecological applications, and provides the basis for further studies at this site, regional to global comparative studies, and for the design of similar monitoring programs elsewhere.


Assuntos
Biota , Recifes de Corais , Animais , Austrália
4.
Ecol Evol ; 10(19): 10829-10850, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072299

RESUMO

The jaguar (Panthera onca) is the dominant predator in Central and South America, but is now considered near-threatened. Estimating jaguar population size is difficult, due to uncertainty in the underlying dynamical processes as well as highly variable and sparse data. We develop a stochastic temporal model of jaguar abundance in the Peruvian Amazon, taking into account prey availability, under various climate change scenarios. The model is calibrated against existing data sets and an elicitation study in Pacaya Samiria. In order to account for uncertainty and variability, we construct a population of models over four key parameters, namely three scaling parameters for aquatic, small land, and large land animals and a hunting index. We then use this population of models to construct probabilistic evaluations of jaguar populations under various climate change scenarios characterized by increasingly severe flood and drought events and discuss the implications on jaguar numbers. Results imply that jaguar populations exhibit some robustness to extreme drought and flood, but that repeated exposure to these events over short periods can result in rapid decline. However, jaguar numbers could return to stability-albeit at lower numbers-if there are periods of benign climate patterns and other relevant factors are conducive.

5.
Sci Data ; 7(1): 355, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082344

RESUMO

Addressing the global decline of coral reefs requires effective actions from managers, policymakers and society as a whole. Coral reef scientists are therefore challenged with the task of providing prompt and relevant inputs for science-based decision-making. Here, we provide a baseline dataset, covering 1300 km of tropical coral reef habitats globally, and comprised of over one million geo-referenced, high-resolution photo-quadrats analysed using artificial intelligence to automatically estimate the proportional cover of benthic components. The dataset contains information on five major reef regions, and spans 2012-2018, including surveys before and after the 2016 global bleaching event. The taxonomic resolution attained by image analysis, as well as the spatially explicit nature of the images, allow for multi-scale spatial analyses, temporal assessments (decline and recovery), and serve for supporting image recognition developments. This standardised dataset across broad geographies offers a significant contribution towards a sound baseline for advancing our understanding of coral reef ecology and thereby taking collective and informed actions to mitigate catastrophic losses in coral reefs worldwide.


Assuntos
Recifes de Corais , Monitoramento Ambiental , Animais , Antozoários/classificação , Inteligência Artificial , Planeta Terra
6.
Glob Chang Biol ; 26(5): 2785-2797, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32115808

RESUMO

Anticipating future changes of an ecosystem's dynamics requires knowledge of how its key communities respond to current environmental regimes. The Great Barrier Reef (GBR) is under threat, with rapid changes of its reef-building hard coral (HC) community structure already evident across broad spatial scales. While several underlying relationships between HC and multiple disturbances have been documented, responses of other benthic communities to disturbances are not well understood. Here we used statistical modelling to explore the effects of broad-scale climate-related disturbances on benthic communities to predict their structure under scenarios of increasing disturbance frequency. We parameterized a multivariate model using the composition of benthic communities estimated by 145,000 observations from the northern GBR between 2012 and 2017. During this time, surveyed reefs were variously impacted by two tropical cyclones and two heat stress events that resulted in extensive HC mortality. This unprecedented sequence of disturbances was used to estimate the effects of discrete versus interacting disturbances on the compositional structure of HC, soft corals (SC) and algae. Discrete disturbances increased the prevalence of algae relative to HC while the interaction between cyclones and heat stress was the main driver of the increase in SC relative to algae and HC. Predictions from disturbance scenarios included relative increases in algae versus SC that varied by the frequency and types of disturbance interactions. However, high uncertainty of compositional changes in the presence of several disturbances shows that responses of algae and SC to the decline in HC needs further research. Better understanding of the effects of multiple disturbances on benthic communities as a whole is essential for predicting the future status of coral reefs and managing them in the light of new environmental regimes. The approach we develop here opens new opportunities for reaching this goal.


Assuntos
Antozoários , Tempestades Ciclônicas , Animais , Recifes de Corais , Ecossistema
7.
Sci Rep ; 9(1): 1027, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705361

RESUMO

Preserving coral reef resilience is a major challenge in the Anthropocene, yet recent studies demonstrate failures of reef recovery from disturbance, globally. The wide and vigorous outer-reef system of French Polynesia presents a rare opportunity to assess ecosystem resilience to disturbances at a large-scale equivalent to the size of Europe. In this purpose, we analysed long-term data on coral community dynamics and combine the mixed-effects regression framework with a set of functional response models to evaluate coral recovery trajectories. Analyses of 14 years data across 17 reefs allowed estimating impacts of a cyclone, bleaching event and crown-of-thorns starfish outbreak, which generated divergence and asynchrony in coral community trajectory. We evaluated reef resilience by quantifying levels of exposure, degrees of vulnerability, and descriptors of recovery of coral communities in the face of disturbances. Our results show an outstanding rate of coral recovery, with a systematic return to the pre-disturbance state within only 5 to 10 years. Differences in the impacts of disturbances among reefs and in the levels of vulnerability of coral taxa to these events resulted in diverse recovery patterns. The consistent recovery of coral communities, and convergence toward pre-disturbance community structures, reveals that the processes that regulate ecosystem recovery still prevail in French Polynesia.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Ecossistema , Exposição Ambiental , Animais , Geografia , Modelos Teóricos , Polinésia , Dinâmica Populacional
8.
Sci Rep ; 8(1): 9680, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946062

RESUMO

Coral reefs are increasingly threatened by various types of disturbances, and their recovery is challenged by accelerating, human-induced environmental changes. Recurrent disturbances reduce the pool of mature adult colonies of reef-building corals and undermine post-disturbance recovery from newly settled recruits. Using a long-term interannual data set, we show that coral assemblages on the reef slope of Moorea, French Polynesia, have maintained a high capacity to recover despite a unique frequency of large-scale disturbances which, since the 1990s, have caused catastrophic declines in coral cover and abundance. In 2014, only four years after one of the most extreme cases of coral decline documented, abundance of juvenile and adult colonies had regained or exceeded pre-disturbance levels, and no phase-shift to macroalgal dominance was recorded. This rapid recovery has been achieved despite constantly low coral recruitment rates, suggesting a high post-disturbance survivorship of recruits. However, taxonomic differences in coral susceptibility to disturbances and contrasting recovery trajectories have resulted in changes in the relative composition of species. In the present context of global coral reef decline, our study establishes a new benchmark for the capacity of certain benthic reef communities to sustain and recover their coral cover from repeated, intense disturbances.


Assuntos
Recifes de Corais , Animais , Antozoários , Polinésia
9.
R Soc Open Sci ; 5(4): 172226, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29765676

RESUMO

Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems.

10.
PLoS One ; 9(11): e110968, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364915

RESUMO

Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.


Assuntos
Antozoários , Ecossistema , Modelos Teóricos , Incerteza , Algoritmos , Animais , Teorema de Bayes , Recifes de Corais , Monitoramento Ambiental
11.
PLoS One ; 7(10): e47363, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056635

RESUMO

Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.


Assuntos
Antozoários/fisiologia , Peixes/fisiologia , Invertebrados/fisiologia , Animais , Recifes de Corais , Dinâmica Populacional , Estrelas-do-Mar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...