Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153986

RESUMO

We used non-invasive real-time genomic approaches to monitor one of the last surviving populations of the critically endangered kakapo (Strigops habroptilus). We first established an environmental DNA metabarcoding protocol to identify the distribution of kakapo and other vertebrate species in a highly localized manner using soil samples. Harnessing real-time nanopore sequencing and the high-quality kakapo reference genome, we then extracted species-specific DNA from soil. We combined long read-based haplotype phasing with known individual genomic variation in the kakapo population to identify the presence of individuals, and confirmed these genomically informed predictions through detailed metadata on kakapo distributions. This study shows that individual identification is feasible through nanopore sequencing of environmental DNA, with important implications for future efforts in the application of genomics to the conservation of rare species, potentially expanding the application of real-time environmental DNA research from monitoring species distribution to inferring fitness parameters such as genomic diversity and inbreeding.


Assuntos
DNA Ambiental , Papagaios , Humanos , Animais , Genômica , Solo , Biodiversidade
2.
Nat Ecol Evol ; 7(10): 1693-1705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640765

RESUMO

The kakapo is a critically endangered, intensively managed, long-lived nocturnal parrot endemic to Aotearoa New Zealand. We generated and analysed whole-genome sequence data for nearly all individuals living in early 2018 (169 individuals) to generate a high-quality species-wide genetic variant callset. We leverage extensive long-term metadata to quantify genome-wide diversity of the species over time and present new approaches using probabilistic programming, combined with a phenotype dataset spanning five decades, to disentangle phenotypic variance into environmental and genetic effects while quantifying uncertainty in small populations. We find associations for growth, disease susceptibility, clutch size and egg fertility within genic regions previously shown to influence these traits in other species. Finally, we generate breeding values to predict phenotype and illustrate that active management over the past 45 years has maintained both genome-wide diversity and diversity in breeding values and, hence, evolutionary potential. We provide new pathways for informing future conservation management decisions for kakapo, including prioritizing individuals for translocation and monitoring individuals with poor growth or high disease risk. Overall, by explicitly addressing the challenge of the small sample size, we provide a template for the inclusion of genomic data that will be transformational for species recovery efforts around the globe.


Assuntos
Espécies em Perigo de Extinção , Papagaios , Humanos , Animais , Genômica , Genoma , Nova Zelândia
3.
PeerJ ; 11: e14675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755872

RESUMO

Background: Animal conservation often requires intensive management actions to improve reproductive output, yet any adverse effects of these may not be immediately apparent, particularly in threatened species with small populations and long lifespans. Hand-rearing is an example of a conservation management strategy which, while boosting populations, can cause long-term demographic and behavioural problems. It is used in the recovery of the critically endangered kakapo (Strigops habroptilus), a flightless parrot endemic to New Zealand, to improve the slow population growth that is due to infrequent breeding, low fertility and low hatching success. Methods: We applied Bayesian mixed models to examine whether hand-rearing and other factors were associated with clutch fertility in kakapo. We used projection predictive variable selection to compare the relative contributions to fertility from the parents' rearing environment, their age and previous copulation experience, the parental kinship, and the number of mates and copulations for each clutch. We also explored how the incidence of repeated copulations and multiple mates varied with kakapo density. Results: The rearing status of the clutch father and the number of mates and copulations of the clutch mother were the dominant factors in predicting fertility. Clutches were less likely to be fertile if the father was hand-reared compared to wild-reared, but there was no similar effect for mothers. Clutches produced by females copulating with different males were more likely to be fertile than those from repeated copulations with one male, which in turn had a higher probability of fertility than those from a single copulation. The likelihood of multiple copulations and mates increased with female:male adult sex ratio, perhaps as a result of mate guarding by females. Parental kinship, copulation experience and age all had negligible associations with clutch fertility. Conclusions: These results provide a rare assessment of factors affecting fertility in a wild threatened bird species, with implications for conservation management. The increased fertility due to multiple mates and copulations, combined with the evidence for mate guarding and previous results of kakapo sperm morphology, suggests that an evolutionary mechanism exists to optimise fertility through sperm competition in kakapo. The high frequency of clutches produced from single copulations in the contemporary population may therefore represent an unnatural state, perhaps due to too few females. This suggests that opportunity for sperm competition should be maximised by increasing population densities, optimising sex ratios, and using artificial insemination. The lower fertility of hand-reared males may result from behavioural defects due to lack of exposure to conspecifics at critical development stages, as seen in other taxa. This potential negative impact of hand-rearing must be balanced against the short-term benefits it provides.


Assuntos
Papagaios , Sêmen , Animais , Masculino , Feminino , Teorema de Bayes , Fertilidade , Reprodução , Espécies em Perigo de Extinção
4.
Cell Genom ; 1(1): 100002, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36777713

RESUMO

The kakapo is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kakapo, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kakapo indicate that present-day island kakapo have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kakapo breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...