Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5526, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797922

RESUMO

Type I CRISPR-Cas systems are abundant and widespread adaptive immune systems in bacteria and can greatly enhance bacterial survival in the face of phage infection. Upon phage infection, some CRISPR-Cas immune responses result in bacterial dormancy or slowed growth, which suggests the outcomes for infected cells may vary between systems. Here we demonstrate that type I CRISPR immunity of Pectobacterium atrosepticum leads to suppression of two unrelated virulent phages, ɸTE and ɸM1. Immunity results in an abortive infection response, where infected cells do not survive, but viral propagation is severely decreased, resulting in population protection due to the reduced phage epidemic. Our findings challenge the view of CRISPR-Cas as a system that protects the individual cell and supports growing evidence of abortive infection by some types of CRISPR-Cas systems.


Assuntos
Bactérias/imunologia , Bacteriófagos/imunologia , Sistemas CRISPR-Cas/imunologia , Pectobacterium/imunologia , Bactérias/genética , Bactérias/virologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas/genética , Viabilidade Microbiana/genética , Viabilidade Microbiana/imunologia , Pectobacterium/genética , Pectobacterium/virologia , Replicação Viral/genética , Replicação Viral/imunologia
2.
PLoS Genet ; 9(4): e1003454, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637624

RESUMO

In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ilhas Genômicas , Sistemas CRISPR-Cas , Genoma Bacteriano , Plasmídeos
3.
RNA Biol ; 8(3): 517-28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21519197

RESUMO

CRISPR/Cas systems provide bacteria and archaea with small RNA-based adaptive immunity against foreign elements such as phages and plasmids. An important step in the resistance mechanism involves the generation of small guide RNAs (crRNAs) that, in combination with Cas proteins, recognize and inhibit foreign nucleic acids in a sequence specific manner. The generation of crRNAs requires processing of the primary CRISPR RNA by an endoribonuclease. In this study we have characterized the Ypest subtype CRISPR/Cas system in the plant pathogen Pectobacterium atrosepticum. We analyse the transcription of the cas genes and the 3 CRISPR arrays. The cas genes are expressed as an operon and all three CRISPR arrays are transcribed and processed into small RNAs. The Csy4 protein was identified as responsible for processing of CRISPR RNA in vivo and in vitro into crRNAs and appears to interact with itself in the absence of other Cas proteins. This study furthers our understanding of the CRISPR/Cas mechanism by providing the first in vivo evidence that the CRISPR endoribonuclease Csy4 generates crRNAs in its native host and characterizes the operonic transcription of the cas cluster.


Assuntos
Proteínas de Bactérias/genética , Pectobacterium/genética , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Pectobacterium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA