Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 194(5): 810-827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325553

RESUMO

Corneal nerve impairment contributes significantly to dry eye disease (DED) symptoms and is thought to be secondary to corneal epithelial damage. Transient receptor potential vanilloid-1 (TRPV1) channels abound in corneal nerve fibers and respond to inflammation-derived ligands, which increase in DED. TRPV1 overactivation promotes axonal degeneration in vitro, but whether it participates in DED-associated corneal nerve dysfunction is unknown. To explore this, DED was surgically induced in wild-type and TRPV1-knockout mice, which developed comparable corneal epithelial damage and reduced tear secretion. However, corneal mechanosensitivity decreased progressively only in wild-type DED mice. Sensitivity to capsaicin (TRPV1 agonist) increased in wild-type DED mice, and consistently, only this strain displayed DED-induced pain signs. Wild-type DED mice exhibited nerve degeneration throughout the corneal epithelium, whereas TRPV1-knockout DED mice only developed a reduction in the most superficial nerve endings that failed to propagate to the deeper subbasal corneal nerves. Pharmacologic TRPV1 blockade reproduced these findings in wild-type DED mice, whereas CD4+ T cells from both strains were equally pathogenic when transferred, ruling out a T-cell-mediated effect of TRPV1 deficiency. These data show that ocular desiccation triggers superficial corneal nerve damage in DED, but proximal propagation of axonal degeneration requires TRPV1 expression. Local inflammation sensitized TRPV1 channels, which increased ocular pain. Thus, ocular TRPV1 overactivation drives DED-associated corneal nerve impairment.


Assuntos
Lesões da Córnea , Síndromes do Olho Seco , Canais de Potencial de Receptor Transitório , Animais , Camundongos , Córnea/patologia , Lesões da Córnea/patologia , Síndromes do Olho Seco/metabolismo , Inflamação/patologia , Dor , Canais de Potencial de Receptor Transitório/farmacologia
2.
PLoS Pathog ; 19(12): e1011877, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127952

RESUMO

Shiga-toxin producing Escherichia coli (STEC) infections can cause from bloody diarrhea to Hemolytic Uremic Syndrome. The STEC intestinal infection triggers an inflammatory response that can facilitate the development of a systemic disease. We report here that neutrophils might contribute to this inflammatory response by secreting Interleukin 1 beta (IL-1ß). STEC stimulated neutrophils to release elevated levels of IL-1ß through a mechanism that involved the activation of caspase-1 driven by the NLRP3-inflammasome and neutrophil serine proteases (NSPs). Noteworthy, IL-1ß secretion was higher at lower multiplicities of infection. This secretory profile modulated by the bacteria:neutrophil ratio, was the consequence of a regulatory mechanism that reduced IL-1ß secretion the higher were the levels of activation of both caspase-1 and NSPs, and the production of NADPH oxidase-dependent reactive oxygen species. Finally, we also found that inhibition of NSPs significantly reduced STEC-triggered IL-1ß secretion without modulating the ability of neutrophils to kill the bacteria, suggesting NSPs might represent pharmacological targets to be evaluated to limit the STEC-induced intestinal inflammation.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Síndrome Hemolítico-Urêmica , Interleucina-1beta , Escherichia coli Shiga Toxigênica , Humanos , Caspases , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Neutrófilos , Interleucina-1beta/metabolismo
3.
J Neuroinflammation ; 20(1): 120, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217914

RESUMO

Proper sight is not possible without a smooth, transparent cornea, which is highly exposed to environmental threats. The abundant corneal nerves are interspersed with epithelial cells in the anterior corneal surface and are instrumental to corneal integrity and immunoregulation. Conversely, corneal neuropathy is commonly observed in some immune-mediated corneal disorders but not in others, and its pathogenesis is poorly understood. Here we hypothesized that the type of adaptive immune response may influence the development of corneal neuropathy. To test this, we first immunized OT-II mice with different adjuvants that favor T helper (Th)1 or Th2 responses. Both Th1-skewed mice (measured by interferon-γ production) and Th2-skewed (measured by interleukin-4 production) developed comparable ocular surface inflammation and conjunctival CD4+ T cell recruitment but no appreciable corneal epithelial changes upon repeated local antigenic challenge. Th1-skewed mice showed decreased corneal mechanical sensitivity and altered corneal nerve morphology (signs of corneal neuropathy) upon antigenic challenge. However, Th2-skewed mice also developed milder corneal neuropathy immediately after immunization and independently of ocular challenge, suggestive of adjuvant-induced neurotoxicity. All these findings were confirmed in wild-type mice. To circumvent unwanted neurotoxicity, CD4+ T cells from immunized mice were adoptively transferred to T cell-deficient mice. In this setup, only Th1-transferred mice developed corneal neuropathy upon antigenic challenge. To further delineate the contribution of each profile, CD4+ T cells were polarized in vitro to either Th1, Th2, or Th17 cells and transferred to T cell-deficient mice. Upon local antigenic challenge, all groups had commensurate conjunctival CD4+ T cell recruitment and macroscopic ocular inflammation. However, none of the groups developed corneal epithelial changes and only Th1-transferred mice showed signs of corneal neuropathy. Altogether, the data show that corneal nerves, as opposed to corneal epithelial cells, are sensitive to immune-driven damage mediated by Th1 CD4+ T cells in the absence of other pathogenic factors. These findings have potential therapeutic implications for ocular surface disorders.


Assuntos
Células Th1 , Células Th2 , Camundongos , Animais , Adjuvantes Imunológicos , Córnea , Imunidade Adaptativa , Inflamação
4.
Exp Eye Res ; 222: 109191, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850173

RESUMO

As the cornea is densely innervated, its nerves are integral not only to its structure but also to its pathophysiology. Corneal integrity depends on a protective tear film that is maintained by corneal sensation and the reflex arcs that control tearing and blinking. Furthermore, corneal nerves promote epithelial growth and local immunoregulation. Thus, corneal nerves constitute pillars of ocular surface homeostasis. Conversely, the abnormal tear film in dry eye favors corneal epithelial and nerve damage. The ensuing corneal nerve dysfunction contributes to dry eye progression, ocular pain and discomfort, and other neuropathic symptoms. Recent evidence from clinical studies and animal models highlight the significant but often overlooked neural dimension of dry eye pathophysiology. Herein, we review the anatomy and physiology of corneal nerves before exploring their role in the mechanisms of dry eye disease.


Assuntos
Síndromes do Olho Seco , Animais , Córnea/fisiologia , Lágrimas/química
5.
Front Oncol ; 11: 598319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381700

RESUMO

Current standard treatment of patients with hairy cell leukemia (HCL), a chronic B-cell neoplasia of low incidence that affects the elderly, is based on the administration of purine analogs such as cladribine. This chemotherapy approach shows satisfactory responses, but the disease relapses, often repeatedly. Venetoclax (ABT-199) is a Bcl-2 inhibitor currently approved for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) in adult patients ineligible for intensive chemotherapy. Given that HCL cells express Bcl-2, our aim was to evaluate venetoclax as a potential therapy for HCL. We found that clinically relevant concentrations of venetoclax (0.1 and 1 µM) induced primary HCL cell apoptosis in vitro as measured by flow cytometry using Annexin V staining. As microenvironment induces resistance to venetoclax in CLL, we also evaluated its effect in HCL by testing the following stimuli: activated T lymphocytes, stromal cells, TLR-9 agonist CpG, and TLR-2 agonist PAM3. We found decreased levels of venetoclax-induced cytotoxicity in HCL cells exposed for 48 h to any of these stimuli, suggesting that leukemic B cells from HCL patients are sensitive to venetoclax, but this sensitivity can be overcome by signals from the microenvironment. We propose that the combination of venetoclax with drugs that target the microenvironment might improve its efficacy in HCL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...