Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Handb Clin Neurol ; 201: 1-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38697733

RESUMO

Peripheral nerves are functional networks in the body. Disruption of these networks induces varied functional consequences depending on the types of nerves and organs affected. Despite the advances in microsurgical repair and understanding of nerve regeneration biology, restoring full functions after severe traumatic nerve injuries is still far from achieved. While a blunted growth response from axons and errors in axon guidance due to physical barriers may surface as the major hurdles in repairing nerves, critical additional cellular and molecular aspects challenge the orderly healing of injured nerves. Understanding the systematic reprogramming of injured nerves at the cellular and molecular levels, referred to here as "hallmarks of nerve injury regeneration," will offer better ideas. This chapter discusses the hallmarks of nerve injury and regeneration and critical points of failures in the natural healing process. Potential pharmacological and nonpharmacological intervention points for repairing nerves are also discussed.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Humanos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Nervos Periféricos , Axônios/fisiologia , Axônios/patologia
3.
J Exp Bot ; 74(21): 6773-6789, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37658791

RESUMO

Phytoplankton are exposed to dramatic variations in light quality when cells are carried by upwelling or downwelling currents or encounter sediment. We investigated the potential impact of light quality changes in Ostreococcus, a key marine photosynthetic picoeukaryote, by analysing changes in its transcriptome, pigment content, and photophysiology after acclimation to monochromatic red, green, or blue light. The clade B species RCC809, isolated from the deep euphotic zone of the tropical Atlantic Ocean, responded to blue light by accelerating cell division at the expense of storage reserves and by increasing the relative level of blue-light-absorbing pigments. It responded to red and green light by increasing its potential for photoprotection. In contrast, the clade A species OTTH0595, which originated from a shallow water environment, showed no difference in photosynthetic properties and minor differences in carotenoid contents between light qualities. This was associated with the loss of candidate light-quality responsive promoter motifs identified in RCC809 genes. These results demonstrate that light quality can have a major influence on the physiology of eukaryotic phytoplankton and suggest that different light quality environments can drive selection for diverse patterns of responsiveness and environmental niche partitioning.


Assuntos
Clorófitas , Ecótipo , Clorófitas/genética , Fotossíntese , Fitoplâncton/genética , Oceanos e Mares
4.
Glia ; 71(8): 2045-2066, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37132422

RESUMO

Remyelination and neurodegeneration prevention mitigate disability in Multiple Sclerosis (MS). We have shown acute intermittent hypoxia (AIH) is a novel, non-invasive and effective therapy for peripheral nerve repair, including remyelination. Thus, we posited AIH would improve repair following CNS demyelination and address the paucity of MS repair treatments. AIH's capacity to enhance intrinsic repair, functional recovery and alter disease course in the experimental autoimmune encephalomyelitis (EAE) model of MS was assessed. EAE was induced by MOG35-55 immunization in C57BL/6 female mice. EAE mice received either AIH (10 cycles-5 min 11% oxygen alternating with 5 min 21% oxygen) or Normoxia (control; 21% oxygen for same duration) once daily for 7d beginning at near peak EAE disease score of 2.5. Mice were followed post-treatment for an additional 7d before assessing histopathology or 14d to examine maintenance of AIH effects. Alterations in histopathological correlates of multiple repair indices were analyzed quantitatively in focally demyelinated ventral lumbar spinal cord areas to assess AIH impacts. AIH begun at near peak disease significantly improved daily clinical scores/functional recovery and associated histopathology relative to Normoxia controls and the former were maintained for at least 14d post-treatment. AIH enhanced correlates of myelination, axon protection and oligodendrocyte precursor cell recruitment to demyelinated areas. AIH also effected a dramatic reduction in inflammation, while polarizing remaining macrophages/microglia toward a pro-repair state. Collectively, this supports a role for AIH as a novel non-invasive therapy to enhance CNS repair and alter disease course following demyelination and holds promise as a neuroregenerative MS strategy.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Remielinização , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Anaerobiose , Oxigênio , Feminino
5.
Neural Regen Res ; 17(5): 1042-1050, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34558531

RESUMO

Our lab has shown that brief electrical nerve stimulation (ES) has a dramatic impact on remyelination of lysophosphatidyl choline (LPC)-induced focally demyelinated rat peripheral nerves, while also inducing an axon-protective phenotype and shifting macrophages from a predominantly pro-inflammatory toward a pro-repair phenotype. Whether this same potential exists in the central nervous system is not known. Thus, for proof of principle studies, the peripheral nerve demyelination and ES model was adapted to the central nervous system, whereby a unilateral focal LPC-induced demyelination of the dorsal column at the lumbar enlargement where the sciatic nerve afferents enter was created, so that subsequent ipsilateral sciatic nerve ES results in increased neural activity in the demyelinated axons. Data reveal a robust focal demyelination at 7 days post-LPC injection. Delivery of 1-hour ES at 7 days post-LPC polarizes macrophages/microglia toward a pro-repair phenotype when examined at 14 days post-LPC; results in smaller LPC-associated regions of inflammation compared to non-stimulated controls; results in significantly more cells of the oligodendroglial lineage in the demyelinated region; elevates myelin basic protein levels; and shifts the paranodal protein Caspr along demyelinated axons to a more restricted distribution, consistent with reformation of the paranodes of the nodes of Ranvier. ES also significantly enhanced levels of phosphorylated neurofilaments detected in the zones of demyelination, which has been shown to confer axon protection. Collectively these findings support that strategies that increase neural activity, such as brief electrical stimulation, can be beneficial for promoting intrinsic repair following focal demyelinating insults in demyelinating diseases such as multiple sclerosis. All animal procedures performed were approved by the University of Saskatchewan's Animal Research Ethics Board (protocol# 20090087; last approval date: November 5, 2020).

6.
Clin Exp Pharmacol Physiol ; 48(8): 1090-1102, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33638234

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an inflammatory demyelinating disease featured with neuroinflammation, demyelination, and the loss of oligodendrocytes. Cognitive impairment and depression are common neuropsychiatric symptoms in MS that are poorly managed with the present interventions. OBJECTIVE: This study aimed to investigate the effects of low field magnetic stimulation (LFMS), a novel non-invasive neuromodulation technology, on cognitive impairment and depressive symptoms associated with MS using a mouse model of demyelination. METHODS: C57BL female mice were fed with a 0.2% cuprizone diet for 12 weeks to induce a chronic demyelinating model followed by 4 weeks of cuprizone withdrawal with either sham or LFMS treatment. RESULTS: Improved cognition and depression-like behaviour and restored weight gain were observed in mice with LFMS treatment. Immunohistochemical and immunoblotting data showed enhanced myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein expressions (MOG) in the prefrontal cortex of mice with LFMS treatment, supporting that myelin repair was promoted. LFMS also increased the protein expression of mature oligodendrocyte biomarker glutathione-S-transferase (GST-π). In addition, expression of TGF-ß and associated receptors were elevated with LFMS treatment, implicating this pathway in the response. CONCLUSION: Results from the present study revealed LFMS to have neuroprotective effects, suggesting that LFMS has potential therapeutic value for treating cognitive impairment and depression related to demyelination disorders.


Assuntos
Cuprizona , Animais , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina , Doenças Neuroinflamatórias , Oligodendroglia
7.
Neural Regen Res ; 15(12): 2353-2361, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32594060

RESUMO

Emerging evidence supports that the stress response to peripheral nerve injury extends beyond the injured neuron, with alterations in associated transcription factors detected both locally and remote to the lesion. Stress-induced nuclear translocation of the transcription factor forkhead class box O3a (FOXO3a) was initially linked to activation of apoptotic genes in many neuronal subtypes. However, a more complex role of FOXO3a has been suggested in the injury response of sensory neurons, with the injured neuron expressing less FOXO3a. To elucidate this response and test whether non-injured sensory neurons also alter FOXO3a expression, the temporal impact of chronic unilateral L4-6 spinal nerve transection on FOXO3a expression and nuclear localization in adult rat dorsal root ganglion neurons ipsilateral, contralateral or remote to injury relative to naïve controls was examined. In naïve neurons, high cytoplasmic and nuclear levels of FOXO3a colocalized with calcitonin gene related peptide, a marker of the nociceptive subpopulation. One hour post-injury, an acute increase in nuclear FOXO3a in small size injured neurons occurred followed by a significant decrease after 1, 2 and 4 days, with levels increasing toward pre-injury levels by 1 week post-injury. A more robust biphasic response to the injury was observed in uninjured neurons contralateral to and those remote to injury. Nuclear levels of FOXO3a peaked at 1 day, decreased by 4 days, then increased by 1 week post-injury, a response mirrored in C4 dorsal root ganglion neurons remote to injury. This altered expression contralateral and remote to injury supports that spinal nerve damage has broader systemic impacts, a response we recently reported for another stress transcription factor, Luman/CREB3. The early decreased expression and nuclear localization of FOXO3a in the injured neuron implicate these changes in the cell body response to injury that may be protective. Finally, the broader systemic changes support the existence of stress/injury-induced humeral factor(s) influencing transcriptional and potentially behavioral changes in uninjured dorsal root ganglion neurons. Approval to conduct this study was obtained from the University of Saskatchewan Animal Research Ethics Board (protocol #19920164).

9.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32001550

RESUMO

In contrast to neurons in the CNS, damaged neurons from the peripheral nervous system (PNS) regenerate, but this process can be slow and imperfect. Successful regeneration is orchestrated by cytoskeletal reorganization at the tip of the proximal axon segment and cytoskeletal disassembly of the distal segment. Collapsin response mediator protein 4 (CRMP4) is a cytosolic phospho-protein that regulates the actin and microtubule cytoskeleton. During development, CRMP4 promotes growth cone formation and dendrite development. Paradoxically, in the adult CNS, CRMP4 impedes axon regeneration. Here, we investigated the involvement of CRMP4 in peripheral nerve injury in male and female Crmp4-/- mice following sciatic nerve injury. We find that sensory axon regeneration and Wallerian degeneration are impaired in Crmp4-/- mice following sciatic nerve injury. In vitro analysis of dissociated dorsal root ganglion (DRG) neurons from Crmp4-/- mice revealed that CRMP4 functions in the proximal axon segment to promote the regrowth of severed DRG neurons and in the distal axon segment where it facilitates Wallerian degeneration through calpain-dependent formation of harmful CRMP4 fragments. These findings reveal an interesting dual role for CRMP4 in proximal and distal axon segments of injured sensory neurons that coordinately facilitate PNS axon regeneration.


Assuntos
Traumatismos dos Nervos Periféricos , Degeneração Walleriana , Animais , Axônios , Feminino , Gânglios Espinais , Masculino , Camundongos , Proteínas Musculares , Regeneração Nervosa , Nervo Isquiático , Semaforina-3A
10.
J Neuropathol Exp Neurol ; 78(4): 348-364, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30863858

RESUMO

Luman/CREB3 is an important early retrograde axotomy signal regulating acute axon outgrowth in sensory neurons through the adaptive unfolded protein response. As the injury response is transcriptionally multiphasic, a spatiotemporal analysis of Luman/CREB3 localization in rat dorsal root ganglion (DRG) with unilateral L4-L6 spinal nerve injury was conducted to determine if Luman/CREB3 expression was similarly regulated. Biphasic alterations in Luman/CREB3 immunofluorescence and nuclear localization occurred in neurons ipsilateral to 1-hour, 1-day, 2-day, 4-day, and 1-week injury, with a largely parallel, but less avid response contralaterally. This biphasic response was not observed at the transcript level. To assess whether changes in neuronal Luman expression corresponded with an altered intrinsic capacity to grow an axon/neurite in vitro, injury-conditioned and contralateral uninjured DRG neurons underwent a 24-hour axon growth assay. Two-day injury-conditioned neurons exhibited maximal outgrowth capacity relative to naïve, declining at later injury-conditioned timepoints. Only neurons contralateral to 1-week injury exhibited significantly higher axon growth capacity than naïve. In conclusion, alterations in neuronal injury-associated Luman/CREB3 expression support that a multiphasic cell body response occurs and reveal a novel contralateral plasticity in axon growth capacity at 1-week post-injury. These adaptive responses have the potential to inform when repair or therapeutic intervention may be most effective.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Lateralidade Funcional/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axônios/metabolismo , Axotomia , Gânglios Espinais/metabolismo , Masculino , Neuritos/metabolismo , Ratos , Ratos Wistar
11.
Exp Neurol ; 315: 60-71, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30731076

RESUMO

Peripheral nerve regeneration following injury is often incomplete, resulting in significant personal and socioeconomic costs. Although a conditioning crush lesion prior to surgical nerve transection and repair greatly promotes nerve regeneration and functional recovery, feasibility and ethical considerations have hindered its clinical applicability. In a recent proof of principle study, we demonstrated that conditioning electrical stimulation (CES) had effects on early nerve regeneration, similar to that seen in conditioning crush lesions (CCL). To convincingly determine its clinical utility, establishing the effects of CES on target reinnervation and functional outcomes is of utmost importance. In this study, we found that CES improved nerve regeneration and reinnervation well beyond that of CCL. Specifically, compared to CCL, CES resulted in greater intraepidermal skin and NMJ reinnervation, and greater physiological and functional recovery including mechanosensation, compound muscle action potential on nerve conduction studies, normalization of gait pattern, and motor performance on the horizontal ladder test. These findings have direct clinical relevance as CES could be delivered at the bedside before scheduled nerve surgery.


Assuntos
Terapia por Estimulação Elétrica , Regeneração Nervosa , Potenciais de Ação , Animais , Marcha , Masculino , Compressão Nervosa , Condução Nervosa , Junção Neuromuscular/patologia , Traumatismos dos Nervos Periféricos/patologia , Desempenho Psicomotor , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Sensação , Pele/inervação
12.
PLoS One ; 13(5): e0197486, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29775479

RESUMO

One of the most promising approaches to improve recovery after spinal cord injury (SCI) is the augmentation of spontaneously occurring plasticity in uninjured neural pathways. Acute intermittent hypoxia (AIH, brief exposures to reduced O2 levels alternating with normal O2 levels) initiates plasticity in respiratory systems and has been shown to improve recovery in respiratory and non-respiratory spinal systems after SCI in experimental animals and humans. Although the mechanism by which AIH elicits its effects after SCI are not well understood, AIH is known to alter protein expression in spinal neurons in uninjured animals. Here, we examine hypoxia- and plasticity-related protein expression using immunofluorescence in spinal neurons in SCI rats that were treated with AIH combined with motor training, a protocol which has been demonstrated to improve recovery of forelimb function in this lesion model. Specifically, we assessed protein expression in spinal neurons from animals with incomplete cervical SCI which were exposed to AIH treatment + motor training either for 1 or 7 days. AIH treatment consisted of 10 episodes of AIH: (5 min 11% O2: 5 min 21% O2) for 7 days beginning at 4 weeks post-SCI. Both 1 or 7 days of AIH treatment + motor training resulted in significantly increased expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) relative to normoxia-treated controls, in neurons both proximal (cervical) and remote (lumbar) to the SCI. All other markers examined were significantly elevated in the 7 day AIH + motor training group only, at both cervical and lumbar levels. These markers included vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and phosphorylated and nonphosphorylated forms of the BDNF receptor tropomyosin-related kinase B (TrkB). In summary, AIH induces plasticity at the cellular level after SCI by altering the expression of major plasticity- and hypoxia-related proteins at spinal regions proximal and remote to the SCI. These changes occur under the same AIH protocol which resulted in recovery of limb function in this animal model. Thus AIH, which induces plasticity in spinal circuitry, could also be an effective therapy to restore motor function after nervous system injury.


Assuntos
Vértebras Cervicais/fisiopatologia , Hipóxia/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/patologia , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia , Doença Aguda , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Vértebras Cervicais/patologia , Colina O-Acetiltransferase/metabolismo , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Vértebras Lombares/patologia , Vértebras Lombares/fisiopatologia , Masculino , Atividade Motora , Ratos Endogâmicos Lew , Receptor trkB/metabolismo , Traumatismos da Medula Espinal/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Mar Drugs ; 16(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495580

RESUMO

Microalgae are promising sources for the sustainable production of compounds of interest for biotechnologies. Compared to higher plants, microalgae have a faster growth rate and can be grown in industrial photobioreactors. The microalgae biomass contains specific metabolites of high added value for biotechnology such as lipids, polysaccharides or carotenoid pigments. Studying carotenogenesis is important for deciphering the mechanisms of adaptation to stress tolerance as well as for biotechnological production. In recent years, the picoeukaryote Ostreococcustauri has emerged as a model organism thanks to the development of powerful genetic tools. Several strains of Ostreococcus isolated from different environments have been characterized with respect to light response or iron requirement. We have compared the carotenoid contents and growth rates of strains of Ostreococcus (OTTH595, RCC802 and RCC809) under a wide range of light, salinity and temperature conditions. Carotenoid profiles and productivities varied in a strain-specific and stress-dependent manner. Our results also illustrate that phylogenetically related microalgal strains originating from different ecological niches present specific interests for the production of specific molecules under controlled culture conditions.


Assuntos
Biotecnologia/métodos , Carotenoides/biossíntese , Clorófitas/metabolismo , Microalgas/metabolismo , Biotecnologia/instrumentação , Clorófitas/genética , Lipídeos , Microalgas/genética , Fotobiorreatores , Filogenia , Salinidade , Temperatura
14.
Ann Neurol ; 83(4): 691-702, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29537631

RESUMO

By altering the intrinsic metabolism of the cell, including the upregulation of regeneration-associated genes (RAGs) and the production of structural proteins for axonal outgrowth, the conditioning lesion sets up an environment highly conducive to regeneration. In this review, we assess 40 years of research to provide a comprehensive overview of the conditioning lesion literature, directed at (1) discussing the mechanisms of and barriers to nerve regeneration that can be mitigated by the conditioning lesion, (2) describing the cellular and molecular pathways implicated in the conditioning lesion effect, and (3) deliberating on how these insights might be applied clinically. The consequential impact on regeneration is profound, with a conditioned nerve demonstrating longer neurite extensions in vitro, enhanced expression of RAGs within the dorsal root ganglia, early assembly and transportation of cytoskeletal elements, accelerated axonal growth, and improved functional recovery in vivo. Although this promising technique is not yet feasible to be performed in humans, there are potential strategies, such as conditioning electrical stimulation that may be explored to allow nerve conditioning in a clinically safe and well-tolerated manner. Ann Neurol 2018;83:691-702.


Assuntos
Regeneração Nervosa/fisiologia , Neuritos/fisiologia , Nervos Periféricos/fisiologia , Nervos Periféricos/fisiopatologia , Animais , Humanos
15.
Sci Rep ; 7(1): 327, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28336917

RESUMO

Iron is an essential micronutrient involved in many biological processes and is often limiting for primary production in large regions of the World Ocean. Metagenomic and physiological studies have identified clades or ecotypes of marine phytoplankton that are specialized in iron depleted ecological niches. Although less studied, eukaryotic picophytoplankton does contribute significantly to primary production and carbon transfer to higher trophic levels. In particular, metagenomic studies of the green picoalga Ostreococcus have revealed the occurrence of two main clades distributed along coast-offshore gradients, suggesting niche partitioning in different nutrient regimes. Here, we present a study of the response to iron limitation of four Ostreococcus strains isolated from contrasted environments. Whereas the strains isolated in nutrient-rich waters showed high iron requirements, the oceanic strains could cope with lower iron concentrations. The RCC802 strain, in particular, was able to maintain high growth rate at low iron levels. Together physiological and transcriptomic data indicate that the competitiveness of RCC802 under iron limitation is related to a lowering of iron needs though a reduction of the photosynthetic machinery and of protein content, rather than to cell size reduction. Our results overall suggest that iron is one of the factors driving the differentiation of physiologically specialized Ostreococcus strains in the ocean.


Assuntos
Aclimatação , Clorófitas/efeitos dos fármacos , Clorófitas/fisiologia , Ferro/metabolismo , Oligoelementos/metabolismo , Biomassa , Clorófitas/crescimento & desenvolvimento , Perfilação da Expressão Gênica
16.
ISME J ; 11(3): 753-765, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27935586

RESUMO

Several cosmopolitan marine picoeukaryotic phytoplankton are B1 auxotrophs requiring exogenous vitamin B1 or precursor to survive. From genomic evidence, representatives of picoeukaryotic phytoplankton (Ostreococcus and Micromonas spp.) were predicted to use known thiazole and pyrimidine B1 precursors to meet their B1 demands, however, recent culture-based experiments could not confirm this assumption. We hypothesized these phytoplankton strains could grow on precursors alone, but required a thiazole-related precursor other the well-known and extensively tested 4-methyl-5-thiazoleethanol. This hypothesis was tested using bioassays and co-cultures of picoeukaryotic phytoplankton and bacteria. We found that specific B1-synthesizing proteobacteria and phytoplankton are sources of a yet-to-be chemically identified thiazole-related precursor(s) that, along with pyrimidine B1 precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine, can support growth of Ostreococcus spp. (also Micromonas spp.) without B1. We additionally found that the B1-synthesizing plankton do not require contact with picoeukaryotic phytoplankton cells to produce thiazole-related precursor(s). Experiments with wild-type and genetically engineered Ostreococcus lines revealed that the thiazole kinase, ThiM, is required for growth on precursors, and that thiazole-related precursor(s) accumulate to appreciable levels in the euphotic ocean. Overall, our results point to thiazole-related B1 precursors as important micronutrients promoting the survival of abundant phytoplankton influencing surface ocean production and biogeochemical cycling.


Assuntos
Eucariotos/metabolismo , Plâncton/classificação , Tiamina/química , Tiamina/metabolismo , Tiazóis/metabolismo , Clorófitas/genética , Plâncton/metabolismo , Pirimidinas
17.
Glia ; 64(9): 1546-61, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353566

RESUMO

Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561.


Assuntos
Axônios/patologia , Doenças Desmielinizantes/patologia , Estimulação Elétrica , Macrófagos/citologia , Bainha de Mielina/patologia , Nervo Isquiático/patologia , Animais , Doenças Desmielinizantes/terapia , Masculino , Monócitos/patologia , Regeneração Nervosa/fisiologia , Ratos Wistar , Células de Schwann/citologia
18.
Proc Natl Acad Sci U S A ; 112(47): 14652-7, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26553998

RESUMO

In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation.


Assuntos
Ritmo Circadiano , Ferritinas/metabolismo , Homeostase , Ferro/metabolismo , Água do Mar/microbiologia , Western Blotting , Precipitação Química , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Ferritinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Homeostase/efeitos dos fármacos , Homeostase/genética , Homeostase/efeitos da radiação , Ferro/farmacologia , Proteínas de Ligação ao Ferro/metabolismo , Cinética , Luz , Espectrometria de Massas , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Transcriptoma/genética
19.
J Neurosci ; 35(43): 14557-70, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26511246

RESUMO

We recently revealed that the axon endoplasmic reticulum resident transcription factor Luman/CREB3 (herein called Luman) serves as a unique retrograde injury signal in regulation of the intrinsic elongating form of sensory axon regeneration. Here, evidence supports that Luman contributes to axonal regeneration through regulation of the unfolded protein response (UPR) and cholesterol biosynthesis in adult rat sensory neurons. One day sciatic nerve crush injury triggered a robust increase in UPR-associated mRNA and protein expression in both neuronal cell bodies and the injured axons. Knockdown of Luman expression in 1 d injury-conditioned neurons by siRNA attenuated axonal outgrowth to 48% of control injured neurons and was concomitant with reduced UPR- and cholesterol biosynthesis-associated gene expression. UPR PCR-array analysis coupled with qRT-PCR identified and confirmed that four transcripts involved in cholesterol regulation were downregulated >2-fold by the Luman siRNA treatment of the injury-conditioned neurons. Further, the Luman siRNA-attenuated outgrowth could be significantly rescued by either cholesterol supplementation or 2 ng/ml of the UPR inducer tunicamycin, an amount determined to elevate the depressed UPR gene expression to a level equivalent of that observed with crush injury. Using these approaches, outgrowth increased significantly to 74% or 69% that of injury-conditioned controls, respectively. The identification of Luman as a regulator of the injury-induced UPR and cholesterol at levels that benefit the intrinsic ability of axotomized adult rat sensory neurons to undergo axonal regeneration reveals new therapeutic targets to bolster nerve repair.


Assuntos
Axônios/fisiologia , Colesterol/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regeneração Nervosa/genética , Desdobramento de Proteína , Células Receptoras Sensoriais/fisiologia , Animais , Contagem de Células , Gânglios Espinais/citologia , Técnicas de Silenciamento de Genes , Masculino , Compressão Nervosa , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Desdobramento de Proteína/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Neuropatia Ciática/genética , Neuropatia Ciática/patologia , Tunicamicina/farmacologia
20.
J Mol Neurosci ; 55(2): 347-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24894591

RESUMO

Human Luman/CREB3 is a basic leucine zipper transcription factor involved in regulation of the unfolded protein response, dendritic cell maturation, and cell migration. But despite reported expression in primary sensory neurons, little is known about its role in the nervous system. To begin investigations into its role in the adult rat nervous system, the rat Luman/CREB3 coding sequence was isolated so its expression within the nervous system could be determined. The rat Luman/CREB3 clone contains a full-length open reading frame encoding 387 amino acids. The recombinant protein generated from this clone activated transcription in a manner equivalent to human Luman/CREB3 from a CAT reporter plasmid construct containing the unfolded protein response element. Quantitative RT-PCR revealed that rat Luman/CREB3 transcripts in a variety of rat tissues with the highest levels in nervous system tissue. In situ hybridization performed on tissue sections confirmed the findings and demonstrated that the Luman/CREB3 mRNA hybridization signal localizes to neurons and satellite glial cells in dorsal root ganglia, the cytoplasm of hepatocytes in liver, and the hippocampal pyramidal cell layers of CA1 and CA3 and the granular cell layer of the dentate gyrus. Collectively, these findings support a role for Luman/CREB3 in the regulation of nervous system function.


Assuntos
Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gânglios Espinais/metabolismo , Fígado/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , Ratos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...