Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019508

RESUMO

In this paper, we present our system for the RSNA Intracranial Hemorrhage Detection challenge, which is based on the RSNA 2019 Brain CT Hemorrhage dataset. The proposed system is based on a lightweight deep neural network architecture composed of a convolutional neural network (CNN) that takes as input individual CT slices, and a Long Short-Term Memory (LSTM) network that takes as input multiple feature embeddings provided by the CNN. For efficient processing, we consider various feature selection methods to produce a subset of useful CNN features for the LSTM. Furthermore, we reduce the CT slices by a factor of 2×, which enables us to train the model faster. Even if our model is designed to balance speed and accuracy, we report a weighted mean log loss of 0.04989 on the final test set, which places us in the top 30 ranking (2%) from a total of 1345 participants. While our computing infrastructure does not allow it, processing CT slices at their original scale is likely to improve performance. In order to enable others to reproduce our results, we provide our code as open source. After the challenge, we conducted a subjective intracranial hemorrhage detection assessment by radiologists, indicating that the performance of our deep model is on par with that of doctors specialized in reading CT scans. Another contribution of our work is to integrate Grad-CAM visualizations in our system, providing useful explanations for its predictions. We therefore consider our system as a viable option when a fast diagnosis or a second opinion on intracranial hemorrhage detection are needed.


Assuntos
Hemorragias Intracranianas/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Humanos
2.
Electromagn Biol Med ; 29(1-2): 26-30, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20230297

RESUMO

It is already known that electrostatic, magnetostatic, extremely low-frequency electric fields, and pulsed electric field could be utilized in cancer treatment. The healing effect depends on frequency and amplitude of electric field. In the present work, a simple theoretical model is developed to estimate the intensity of electrostatic field that damages a living cell during division. By this model, it is shown that magnification of electric field in the bottleneck of dividing cell is enough to break chemical bounds between molecules by an avalanche process. Our model shows that the externally applied electric field of 4 V/cm intensity is able to hurt a cancer cell at the dividing stage.


Assuntos
Eletricidade , Modelos Biológicos , Neoplasias/patologia , Divisão Celular/efeitos da radiação , Condutividade Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA