Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Biol ; : e14247, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488677

RESUMO

Climate change is one of the most important drivers of ecosystem change, the global-scale impacts of which will intensify over the next 2 decades. Estimating the timing of unprecedented changes is not only challenging but is of great importance for the development of ecosystem conservation guidelines. Time of emergence (ToE) (point at which climate change can be differentiated from a previous climate), a widely applied concept in climatology studies, provides a robust but unexplored approach for assessing the risk of ecosystem collapse, as described by the C criterion of the International Union for Conservation of Nature's Red List of Ecosystems (RLE). We identified 3 main theoretical considerations of ToE for RLE assessment (degree of stability, multifactorial instead of one-dimensional analyses, and hallmarks of ecosystem collapse) and 4 sources of uncertainty when applying ToE methodology (intermodel spread, historical reference period, consensus among variables, and consideration of different scenarios), which aims to avoid misuse and errors while promoting a proper application of the framework by scientists and practitioners. The incorporation of ToE for the RLE assessments adds important information for conservation priority setting that allows prediction of changes within and beyond the time frames proposed by the RLE.


Perspectivas sobre el momento del colapso ecosistémico en un clima cambiante Resumen El cambio climático es uno de los principales causantes del cambio ecosistémico, cuyo impacto a escala global se intensificará en las próximas dos décadas. No sólo es un reto estimar el momento de los cambios sin precedentes, sino también es de gran importancia para el desarrollo de las directrices de conservación de los ecosistemas. El momento de aparición (MdA), el punto en el que el cambio climático puede diferenciarse de un clima previo; es un concepto de aplicación extensa en los estudios de climatología y proporciona una estrategia sólida pero poco explorada para evaluar el riesgo del colapso ecosistémico, como está descrito por el criterio C de la Lista Roja de Ecosistemas (LRE) de la Unión Internacional para la Conservación de la Naturaleza. Identificamos las tres consideraciones teóricas del MdA para la evaluación de la LRE (grado de estabilidad, análisis multifactoriales en vez de unidimensionales y distintivos del colapso ecosistémico) y cuatro fuentes de incertidumbre cuando se aplica la metodología MdA (difusión intermodelo, periodo de referencia histórica, consenso entre las variables y consideración de escenarios distintos), la cual busca evitar el mal uso y los errores mientras se promueve una aplicación adecuada del marco de los científicos y lo practicantes. La incorporación del MdA a las evaluaciones de la LRE añade información importante para el establecimiento de prioridades de conservación que permiten la predicción de cambios dentro y más allá del marco temporal propuesto por la LRE.

2.
Environ Sci Pollut Res Int ; 31(8): 12257-12270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38227262

RESUMO

Although the abundance, survival, and pollination performance of honeybees are sensitive to changes in habitat and climate conditions, the processes by which these effects are transmitted to honey production and interact with beekeeping management are not completely understood. Climate change, habitat degradation, and beekeeping management affect honey yields, and may also interact among themselves resulting in indirect effects across spatial scales. We conducted a 2-year, multi-scale study on Chiloe Island (northern Patagonia), where we evaluated the most relevant environmental and management drivers of honey produced by stationary beekeepers. We found that the effects of microclimate, habitat, and management variables changed with the spatial scale. Among the environmental variables, minimum temperature, and cover of the invasive shrub, gorse (Ulex europaeus) had the strongest detrimental impacts on honey production at spatial scales finer than 4 km. Specialized beekeepers who adopted conventional beekeeping and had more mother colonies were more productive. Mean and minimum temperatures interacted with the percentage of mother colonies, urban cover, and beekeeping income. The gorse cover increased by the combination of high temperatures and the expansion of urban lands, while landscape attributes, such as Eucalyptus plantation cover, influenced beekeeping management. Results suggest that higher temperatures change the available forage or cause thermal stress to honeybees, while invasive shrubs are indicators of degraded habitats. Climate change and habitat degradation are two interrelated environmental phenomena whose effects on beekeeping can be mitigated through adaptive management and habitat restoration.


Assuntos
Mel , Abelhas , Animais , Mel/análise , Microclima , Criação de Abelhas/métodos , Ecossistema , Polinização
3.
Sci Total Environ ; 903: 166130, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579796

RESUMO

Coastal wetlands are considered one of the most vulnerable ecosystems worldwide; the ecosystem services they provide and the conservation of their biodiversity are threatened. Despite the high ecological and socioenvironmental value of coastal wetlands, regional and national vulnerability assessments are scarce. In this study we aimed to assess the vulnerability of coastal wetlands in Chile from 18°S to 42°S (n = 757) under a multiscale approach that included drivers associated with climate change and land cover change. We assessed multiple drivers of vulnerability at three spatial scales (10 m, 100 m, and 500 m) by analyzing multiple remote sensing data (16 variables) on land cover change, wildfires, climatic variables, vegetation functional properties, water surface and importance for biodiversity. We constructed a multifactorial vulnerability index based on the variables analyzed, which provided a map of coastal wetland vulnerability. Then we explored the main drivers associated with the vulnerability of each coastal wetland by performing a Principal Components Analysis with Agglomerative Hierarchical Clustering, which allowed us to group coastal wetlands according to the drivers analyzed. We found that 42.6 ± 9.2 % of the coastal wetlands evaluated have high or very high vulnerability, with higher vulnerability at the 500 m scale (51.4 %). We identified four groups of coastal wetlands: two located in central Chile, mainly affected by climate change-associated drivers (41.9 ± 2.1 %), and one in central Chile which is affected by land cover change (52.8 ± 6.2 %); the latter has a lower vulnerability level. The most vulnerable coastal wetlands were located in central Chile. Our results present novel findings about the current vulnerability of coastal wetlands, which could be validated by governmental institutions in field campaigns. Finally, we believe that our methodological approach could be useful to generate similar assessments in other world zones.

4.
Environ Sci Pollut Res Int ; 30(30): 76253-76262, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37310602

RESUMO

The effect of environmental and socioeconomic conditions on the global pandemic of COVID-19 had been widely studied, yet their influence during the early outbreak remains less explored. Unraveling these relationships represents a key knowledge to prevent potential outbreaks of similar pathogens in the future. This study aims to determine the influence of socioeconomic, infrastructure, air pollution, and weather variables on the relative risk of infection in the initial phase of the COVID-19 pandemic in China. A spatio-temporal Bayesian zero-inflated Poisson model is used to test for the effect of 13 socioeconomic, urban infrastructure, air pollution, and weather variables on the relative risk of COVID-19 disease in 122 cities of China. The results show that socioeconomic and urban infrastructure variables did not have a significant effect on the relative risk of COVID-19. Meanwhile, COVID-19 relative risk was negatively associated with temperature, wind speed, and carbon monoxide, while nitrous dioxide and the human modification index presented a positive effect. Pollution gases presented a marked variability during the study period, showing a decrease of CO. These findings suggest that controlling and monitoring urban emissions of pollutant gases is a key factor for the reduction of risk derived from COVID-19.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , COVID-19/epidemiologia , Poluentes Atmosféricos/análise , Pandemias , Teorema de Bayes , Material Particulado/análise , Poluição do Ar/análise , Monóxido de Carbono/análise , China/epidemiologia , Monitoramento Ambiental
5.
Risk Anal ; 43(1): 8-18, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509703

RESUMO

Contrasting effects have been identified in association of weather (temperature and humidity) and pollutant gases with COVID-19 infection, which could be derived from the influence of lockdowns and season change. The influence of pollutant gases and climate during the initial phases of the pandemic, before the closures and the change of season in the northern hemisphere, is unknown. Here, we used a spatial-temporal Bayesian zero-inflated-Poisson model to test for short-term associations of weather and pollutant gases with the relative risk of COVID-19 disease in China (first outbreak) and the countries with more cases during the initial pandemic (the United States, Spain and Italy), considering also the effects of season and lockdown. We found contrasting association between pollutant gases and COVID-19 risk in the United States, Italy, and Spain, while in China it was negatively associated (except for SO2 ). COVID-19 risk was positively associated with specific humidity in all countries, while temperature presented a negative effect. Our findings showed that short-term associations of air pollutants with COVID-19 infection vary strongly between countries, while generalized effects of temperature (negative) and humidity (positive) with COVID-19 was found. Our results show novel information about the influence of pollution and weather on the initial outbreaks, which contribute to unravel the mechanisms during the beginning of the pandemic.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Ambientais , Humanos , Estados Unidos/epidemiologia , COVID-19/epidemiologia , Espanha/epidemiologia , Teorema de Bayes , Controle de Doenças Transmissíveis , Poluição do Ar/análise , Tempo (Meteorologia) , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Itália/epidemiologia , China/epidemiologia , Surtos de Doenças , Gases , Material Particulado/análise
6.
Vet Q ; 43(1): 1-7, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36409461

RESUMO

Viral diseases jeopardize the health of wildlife in Chile. However, this country lacks health surveillance programs that allow for defining preventive measures to tackle such diseases. The objective of this study was to determine the occurrence and the genetic diversity of pestivirus, herpesvirus and adenovirus in pudus from Chile. Blood samples from wild (n=34) and captive (n=32) pudus were collected between 2011 and 2019 and analyzed through consensus PCR. All the samples were negative to pestivirus and adenovirus. Herpesvirus was confirmed in four captive, and one wild pudu. All four zoo animals share the same sequence for both polymerase and glycoprotein genes. Both sequences share a 100% identity with caprine herpesvirus-2, classifying them in the same cluster as the Macavirus group. In turn, novel sequences of the polymerase and glycoprotein B genes were obtained from the wild pudu. Our study reports the first evidence of CpHV-2 infection in Chile and South American ungulate populations. Further research will be necessary to assess the pathogenicity of CpHV-2 in this species. It is also urgently recommended that molecular, serological and pathological screening should be conducted in Chilean wild and captive pudus to understand the impact of the herpesvirus on their populations.


Assuntos
Cervos , Gammaherpesvirinae , Animais , Humanos , Chile/epidemiologia , Cabras , População da América do Sul
7.
Front Vet Sci ; 10: 1321172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38362467

RESUMO

Introduction: Herpesvirus infections have been highlighted as emerging diseases affecting wildlife health and the conservation of several taxa. Malignant catarrhal fever (MCF) and infectious keratoconjunctivitis (IKC) are two viruses that infect wild ruminants. Nevertheless, epidemiological data on herpesviruses in South American wild ruminants are limited. An outbreak of caprine gammaherpesvirus-2 (CpHV-2) that recently was suspected as the cause of MCF in southern pudus (Pudu puda) prompted the need to conduct molecular screenings in Chilean cervids to understand the epidemiology of herpesviruses. The aim of this study was to determine the occurrence and genetic diversity of herpesviruses in free-ranging cervids from Chile. Methods: Herpesvirus infection was assessed in antemortem blood samples (n = 86) from pudus (n = 81) and huemuls (Hippocamelus bisulcus) (n = 5), as well as postmortem samples of spleen (n = 24) and lung (n = 3) from pudus, using a nested pan-herpesvirus PCR assay. Results: Combining all suitable sample types, DNA of pudu gammaherpesvirus-1 was detected in five pudues and five huemuls, with an overall prevalence of 9.90% (n = 10/101; 95% CI = 5.11-17.87%). One pudu tested positive for ovine gammaherpesvirus-2 (n = 1/96; 1.04%; 95% CI = 0.05-6.49%), and one pudu tested positive for a Macavirus sequence with 98.63 similarity to ovine gammaherpesvirus-2 (n = 96; 1.04%; 95% CI = 0.05-6.49%). Discussion: To the best of our knowledge, this is the first report of a herpesvirus in huemul and of ovine gammaherpesvirus-2 in Chile. Our results also confirm the active circulation of herpesvirus in free-ranging cervids in Chilean Patagonia, and as such, MCF should be considered as a possible cause of disease in free-ranging Chilean pudus and livestock species. Further research is necessary to develop a plan of systematic monitoring (serological and pathological screening) of herpesviruses in Chilean wild and domestic ruminants to understand their diversity and impact on animal health and conservation.

8.
Sci Total Environ ; 849: 157930, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35952895

RESUMO

Headwaters represent an essential component of hydrological, ecological, and socioeconomical systems, by providing constant water streams to the complete basin. However, despite the high importance of headwaters, there is a lack of vulnerability assessments worldwide. Identifying headwaters and their vulnerability in a spatially explicit manner can enable restauration and conservation programs. In this study, we assess the vulnerability of headwaters in South-Central Chile (38.4 to 43.2°S) considering multiple degradation factors related to climate change and land cover change. We analyzed 2292 headwaters, characterizing multiple factors at five spatial scales by using remote sensing data related to Land Use and Cover Change (LUCC), human disturbances, vegetation cover, climate change, potential water demand, and physiography. We then generated an index of vulnerability by integrating all the analyzed variables, which allowed us to map the spatial distribution of headwater vulnerability. Finally, to estimate the main drivers of degradation, we performed a Principal Components Analysis with an Agglomerative Hierarchical Clustering, that allowed us to group headwaters according to the analyzed factors. The largest proportion of most vulnerable headwaters are located in the north of our study area with 48.1 %, 62.1 %, and 28.1 % of headwaters classified as highly vulnerable at 0, 10, and 30 m scale, respectively. The largest proportion of headwaters are affected by Climate Change (63.66 %) and LUCC (23.02 %) on average across all scales. However, we identified three clusters, in which the northern cluster is mainly affected by LUCC, while the Andean and Coastal clusters are mainly affected by climate change. Our results and methods present an informative picture of the current state of headwater vulnerability, identifying spatial patterns and drivers at multiple scales. We believe that the approach developed in this study could be useful for new studies in other zones of the world and can also promote Chilean headwater conservation.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Chile , Ecossistema , Humanos , Análise Espacial , Água
9.
Sci Total Environ ; 838(Pt 1): 155906, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580677

RESUMO

Forest disturbances modify microhabitats along the different vertical strata, triggering structural and functional changes in forest-dwelling beetle communities. However, the effects of multiple environmental factors can be complex to detect in ecosystems that offer a broad variety of microhabitats for a great variety of beetle species. This is the case in Patagonian temperate forests, where the use of remote sensing provides an opportunity to evaluate the sensitivity of beetle species to environmental changes. Here, we identified the environmental drivers of forest-dwelling beetle communities in the ground and canopy of 34 north Patagonian-forest landscapes. We analyzed the associations of the taxonomic and functional diversity of five trophic guilds with 30 remote-sensing variables of landscape structure, composition, and disturbances; vegetation and soil properties; and climate and physical variables. Hierarchical clustering analysis was used to identify trophic guilds responding similarly to predictors. Segmented regression analysis was used to evaluate functional redundancy from taxonomic-functional richness relationships. A total of 583 species (23,848 individuals) of beetles were recorded for both strata. The effects of environmental variables were heterogeneous across strata and guilds. Canopy beetles were especially sensitive to early successional conditions, and canopy attributes, but also benefited from the canopy openness. Forest specialists of the ground and canopy responded differently to environmental variables. Ground-dwelling beetles were mostly affected by fires, human modifications, edge closeness, high temperatures, and soil properties, responding weakly to canopy properties. Functional redundancy varied weakly along environmental gradients, being more likely in local communities of ground-dwelling beetles mostly composed of species with overlapping functional roles. Contrasting environmental responses between ground and canopy beetles, as well as among beetles of different trophic guilds, should arise from microhabitats that vary across strata and interact differently with response traits.


Assuntos
Besouros , Animais , Biodiversidade , Besouros/fisiologia , Ecossistema , Florestas , Solo
10.
Sci Total Environ ; 806(Pt 2): 150604, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597564

RESUMO

Climate change-induced mortality of trees is a concerning phenomenon for global forest ecosystems. The rapid decay and death of long-lived trees can significantly impact forest dynamics, with effects that transmit through ecological networks, becoming more evident in organisms occupying high trophic levels, such as large and specialized woodpecker species. However, understanding how populations of high trophic level species respond to climate change is still a challenge. In this study it was analyzed 32-year data of social groups of the Magellanic Woodpecker (Campephilus magellanicus) in North Patagonia, a region facing increasingly frequent droughts and increased temperatures. A positive trend in the size of woodpecker social groups as a response to climate-induced tree senescence was tested. A causal structural equation model examining climate- tree senescence- woodpecker relationships was used. Increasing nonlinear trends and positive interannual growth rates (>10%) for tree senescence and group size were found. Lowland forest sites had higher levels of tree senescence and more numerous social groups. The causal model supported the positive effect of mean temperature on tree senescence and the positive association of woodpeckers with tree senescence. These results provide evidence of a climate-induced increase in tree senescence that causes an increase in the size of woodpecker social groups. It is suggested that accelerated decay and mortality of trees in the northern Patagonian forests will decrease the stocks of deadwood in the long term, threatening the persistence of this large woodpecker species.


Assuntos
Ecossistema , Árvores , Mudança Climática , Secas , Florestas
11.
J Wildl Dis ; 58(1): 8-14, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797910

RESUMO

Hemotropic mycoplasmas cause hemolytic anemia in a variety of wild and domestic mammals. Despite growing evidence about their widespread presence and genetic diversity in wildlife, their presence has never been investigated in Chilean artiodactyls. We aimed to describe the presence and diversity of hemoplasmas in pudus (Pudu puda), a small cervid native to Chile. Hemoplasma infection was assessed in blood samples from 43 wild and 33 captive pudus from central and southern Chile by direct sequencing of the 16S rRNA gene. We detected hemoplasmas in 13%, with no statistical differences between wild (19%) and captive animals (6%). A sequence closely related to Mycoplasma ovis was present both in wild (14%) and captive (6%) pudus. Two previously undescribed sequences, classified in a clade including hemoplasmas from carnivores, were found in one wild pudu each. This study presents the first evidence of the presence of M. ovislike organisms in Chile and of the susceptibility of pudus to infection with hemoplasmas. Further research is needed to understand the pathologic consequences of this pathogen for pudus, its effects at the population level, and their potential impact on the health small ruminants and other wildlife species in Chile.


Assuntos
Infecções por Mycoplasma , Animais , Chile/epidemiologia , DNA Bacteriano/genética , Mamíferos , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária , Filogenia , RNA Ribossômico 16S/genética
12.
Sci Total Environ ; 801: 149661, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467908

RESUMO

In the last decades, livestock species have been severely affected by heat stress because of increasing temperatures, which has threatened animal welfare and decreased production. Based on thermal comfort indices and ensemble climate projections, we analyzed the current and future global spatiotemporal patterns of the heat exposure of cattle in 10 agroclimatic zones. The results show that ~7% of the global cattle population is currently exposed to dangerous heat conditions. This percentage is projected to increase to ~48% before 2100 under a scenario of growing emissions. Tropical agroclimatic zones are expected to face an early increase in the exposure to intense heat before 2050. Heat exposure was negatively correlated with the socioeconomic variables, showing that poor and livestock-dependent tropical countries are the most affected. Our results demonstrate the near-future consequences of heat stress on livestock, emphasizing the limited time available to implement effective abatement strategies.


Assuntos
Mudança Climática , Transtornos de Estresse por Calor , Agricultura , Animais , Bovinos , Clima , Transtornos de Estresse por Calor/epidemiologia , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico , Temperatura Alta
13.
Sci Rep ; 11(1): 14530, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267297

RESUMO

The chemical composition of snow provides insights on atmospheric transport of anthropogenic contaminants at different spatial scales. In this study, we assess how human activities influence the concentration of elements in the Andean mountain snow along a latitudinal transect throughout Chile. The concentration of seven elements (Al, Cu, Fe, Li, Mg, Mn and Zn) was associated to gaseous and particulate contaminants emitted at different spatial scales. Our results indicate carbon monoxide (CO) averaged at 20 km and nitrogen oxide (NOx) at 40 km as the main indicators of the chemical elements analyzed. CO was found to be a significant predictor of most element concentrations while concentrations of Cu, Mn, Mg and Zn were positively associated to emissions of NOx. Emission of 2.5 µm and 10 µm particulate matter averaged at different spatial scales was positively associated to concentration of Li. Finally, the concentration of Zn was positively associated to volatile organic compounds (VOC) averaged at 40 km around sampling sites. The association between air contaminants and chemical composition of snow suggests that regions with intensive anthropogenic pollution face reduced quality of freshwater originated from glacier and snow melting.

14.
Sci Total Environ ; 771: 145360, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548723

RESUMO

Epiphytic and epixylic lichens respond negatively to forest degradation, climate change and pollution, but those effects may depend on functional traits or interact with the stage of tree decay. Disentangling the main drivers of lichen communities remains a challenge in regions where lichens are diverse and poorly known, as the case of Patagonian temperate forests. We used a multi-scale approach to evaluate the relationship between environmental variables, tree decay stage and lichens. We sampled lichens across three increasing scales (tree â‰ª site â‰ª landscape) by selecting 19 landscape units, where trees in four decay stages (snags, logs, cavity trees and healthy trees) were selected within sampling plots. A total of 35 predictors were measured over different scales, including 25 remote sensing indices of forest conditions, climate and air pollutants. Structural Equation Models were used to test the causal linkages of predictors with lichens, distinguishing functional categories (size, growth and reproductive strategy). A total of 69 lichen species were recorded. Cavity trees and logs supported the largest diversity, while snags and healthy trees had the lowest diversity. Functional lichen groups responded differently to fine-scale variables, including the diameter, height, density and pH of trees. Air pollutants affected species with sexual and mixed strategies. Lichens were sensitive to precipitation, temperature and wind speed, with foliose and sexual species responding positively to the latter. The abundance of all species and macrolichens increased with tree senescence and decreased with canopy continuity. Lichens occupying snags and logs responded negatively to primary productivity and tree senescence, but positively to soil organic matter. Our findings suggest: i) the functional structure of lichen communities varies non-linearly with the wood decay process; ii) the reproductive strategy influences the sensitivity to air pollutants, iii) climate variables influence dispersal and colonization of woody substrates; and iv) forest structure/succession interacts with tree decay.


Assuntos
Poluentes Atmosféricos , Líquens , Mudança Climática , Florestas , Árvores
15.
Insect Sci ; 28(1): 238-250, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31989775

RESUMO

We tested two questions: (i) whether the climatic conditions of the Azorean Islands in Portugal may have restricted the invasion of Harmonia axyridis across this archipelago and (ii) determine what population of this species could have a higher probability of invading the islands. We used MaxEnt to project the climate requirements of different H. axyridis populations from three regions of the world, and the potential global niche of the species in the Azorean islands. Then we assessed the suitability of the islands for each of the three H. axyridis populations and global potential niche through histograms analysis, Principal Component Analysis (PCA) of climate variables, and a variable-by-variable assessment of the suitability response curves compared with the climatic conditions of the Azores. Climatic conditions of the Azores are less suitable for the U.S. and native Asian populations of H. axyridis, and more suitable for European populations and the global potential niche. The PCA showed that the climatic conditions of the islands differed from the climatic requirements of H. axyridis. This difference is mainly explained by precipitation of the wettest month, isothermality, and the minimum temperature of the coldest month. We concluded that the climatic conditions of the Azores could have influenced the establishment and spread of H. axyridis on these islands from Europe. Our results showed that abiotic resistance represented by the climate of the potentially colonizable zones could hinder the establishment of invasive insects, but it could vary depending of the origin of the colonizing population.


Assuntos
Clima , Besouros/fisiologia , Espécies Introduzidas , Características de História de Vida , Animais , Açores , Dinâmica Populacional
16.
Pest Manag Sci ; 77(1): 104-112, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32841491

RESUMO

BACKGOUND: Biological invasions are a global concern in agriculture, food production and biodiversity. Among the invasive species, some hornets are known to have serious effects on honey bees, as found during the invasion of Vespa velutina in Europe. The recent findings of Vespa mandarinia individuals in Washington state in the west coast of the USA have raised alarm in the whole country. Here we estimate the potential spread of V. mandarinia in the USA, analyzing its potential impacts on honey bee colonies, economic losses in the honey bee industry and bee-pollinated croplands. RESULTS: We found that V. mandarinia could colonize Washington and Oregon states in the west coast and a significant proportion of the east coast. If this species spread across the country, it could threaten 95 216 ± 5551 honey bee colonies, threatening an estimated income of US$11.9 and 101.8 million for hive derived products and bee-pollinated crops production, respectively, while colonizing 60 837.8 km2 of bee-pollinated croplands. CONCLUSION: Our results suggest that V. mandarinia will have serious effects in the USA, raising the need for prompt monitoring actions and planning at different administrative levels to avoid its potential spread.


Assuntos
Vespas , Animais , Abelhas , Europa (Continente) , Espécies Introduzidas , Oregon , Estados Unidos , Washington
17.
Front Microbiol ; 11: 2117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983073

RESUMO

In 2018 the fungal pathogen Cryptococcus bacillisporus (AFLP5/VGIII) was isolated for the first time in Chile, representing the only report in a temperate region in South America. We reconstructed the colonization process of C. bacillisporus in Chile, estimating the phylogenetic origin, the potential spread zone, and the population at risk. We performed a phylogenetic analysis of the strain and modeled the environmental niche of the pathogen projecting its potential spread zone into the new colonized region. Finally, we generated risk maps and quantified the people under potential risk. Phylogenetic analysis showed high similarity between the Chilean isolate and two clonal clusters from California, United States and Colombia in South America. The pathogen can expand into all the temperate Mediterranean zone in central Chile and western Argentina, exposing more than 12 million people to this pathogen in Chile. This study has epidemiological and public health implications for the response to a potential C. bacillisporus outbreak, optimizing budgets, routing for screening diagnosis, and treatment implementation.

18.
Pest Manag Sci ; 76(7): 2395-2405, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32048441

RESUMO

BACKGROUND: Solanum sisymbriifolium is a native plant of South America introduced into Africa, which has detrimental effects on crop yields, and on the environment due to weed control treatment by burning. In South America, S. sisymbriifolium is naturally controlled by the beetle Gratiana spadicea, making this a potential option for its control in Africa. Here, we aim to generate current and future scenarios for the introduction of G. spadicea as a biocontrol agent in Africa, analysing: (i) current and future effective biocontrol areas; (ii) potentially avoided economic losses (AEL), and chemical control costs and savings; and (iii) avoided carbon emissions (ACE) associated with the non-burning of crop fields. We combine species distribution models (SDM) with land cover maps to estimate current and future effective biocontrol considering Representative Concentration Pathways (RCP) 4.5 and 8.5 climate change scenarios. We then estimate AEL and ACE using biocontrol, and chemical control costs and savings. RESULTS: The effective biocontrol area reached 392 405 km2 in 18 countries, representing 40% of potentially affected croplands. Climate change induced a decrease in affected croplands and effective biocontrol. The estimated AEL reached US$45 447.2 ± 5617.3 billion distributed across 16 countries, while the estimated chemical control costs and savings reached US$1988.5 billion and 1411.8 billion, respectively. Potential ACE reached 36.3 ± 5.4 Tg. CONCLUSIONS: Our study provides evidence for the potential benefits of biological controllers on economic losses and carbon emissions, which can be incorporated into sustainable development in low-income countries.


Assuntos
Solanum , África , Agricultura , Carbono , Mudança Climática
19.
Risk Anal ; 40(3): 524-533, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31578757

RESUMO

Cryptococcus is an important fungal pathogen worldwide, causing serious clinical manifestations that can affect immunocompetent patients and can be particularly severe for immunocompromised patients. The Cryptococcus gattii s.s. (AFLP4/VGI), Cryptococcus tetragattii (AFLP/VGIV), Cryptococcus neoformans, and Cryptococcus deneoformans have been isolated from both clinical and environmental sources in Europe. We aim to quantify the people in Europe and the entire Mediterranean area who are under risk associated with each of the three fungal pathogens in a spatially explicit way, generating a series of maps and population statistics per country. Niche modeling was applied to estimate the potential distribution of each fungal pathogen, then these models were overlapped with a map of population density to estimate risk levels. The potential number of people per risk level and per country was quantified using a map of population count per pixel. Prevalence of HIV per country was also included in the analysis to quantify the HIV-infected population under potential risk. People under risk associated with exposure to C. gattii species (C. gattii s.s. and C. tetragattii) reached 137.65 million, whereas those exposed to C. neoformans and C. deneoformans were 268.58 and 360.78 million people, respectively. More than a half million HIV-infected patients are exposed to each of the two species of the C. neoformans species complex, and more than 200,000 to the C. gattii species complex. The present results can be useful for public health planning by European governments, focusing on the provision of inputs for a "screen-and-treat" approach, availability of medical resources, and continuous monitoring programs in risk zones.


Assuntos
Criptococose/epidemiologia , Cryptococcus gattii/patogenicidade , Cryptococcus neoformans/patogenicidade , Infecções por HIV/complicações , Imunocompetência , Criptococose/microbiologia , Europa (Continente) , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...