Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Subcell Biochem ; 101: 1-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520302

RESUMO

Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Adenosina Trifosfatases/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Small ; 14(32): e1801910, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29995322

RESUMO

Laser heating of individual cells in culture recently led to seminal studies in cell poration, fusion, migration, or nanosurgery, although measuring the local temperature increase in such experiments remains a challenge. Here, the laser-induced dynamical control of the heat-shock response is demonstrated at the single cell level, enabled by the use of light-absorbing gold nanoparticles as nanosources of heat and a temperature mapping technique based on quadriwave lateral shearing interferometry (QLSI) measurements. As it is label-free, this approach does not suffer from artifacts inherent to previously reported fluorescence-based temperature-mapping techniques and enables the use of any standard fluorescent labels to monitor in parallel the cell's response.


Assuntos
Proteínas de Choque Térmico/metabolismo , Luz , Análise de Célula Única , Temperatura , Fluorescência , Resposta ao Choque Térmico , Fatores de Transcrição/metabolismo
3.
Nat Struct Mol Biol ; 23(2): 140-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26727489

RESUMO

Heat-shock transcription factor 1 (HSF1) has a central role in mediating the protective response to protein conformational stresses in eukaryotes. HSF1 consists of an N-terminal DNA-binding domain (DBD), a coiled-coil oligomerization domain, a regulatory domain and a transactivation domain. Upon stress, HSF1 trimerizes via its coiled-coil domain and binds to the promoters of heat shock protein-encoding genes. Here, we present cocrystal structures of the human HSF1 DBD in complex with cognate DNA. A comparative analysis of the HSF1 paralog Skn7 from Chaetomium thermophilum showed that single amino acid changes in the DBD can switch DNA binding specificity, thus revealing the structural basis for the interaction of HSF1 with cognate DNA. We used a crystal structure of the coiled-coil domain of C. thermophilum Skn7 to develop a model of the active human HSF1 trimer in which HSF1 embraces the heat-shock-element DNA.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/química , Fatores de Transcrição de Choque Térmico , Humanos , Modelos Moleculares , Multimerização Proteica , Estrutura Terciária de Proteína
4.
Front Mol Biosci ; 2: 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26913285

RESUMO

Molecular chaperones of the Hsp70 family form an important hub in the cellular protein folding networks in bacteria and eukaryotes, connecting translation with the downstream machineries of protein folding and degradation. The Hsp70 folding cycle is driven by two types of cochaperones: J-domain proteins stimulate ATP hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) promote replacement of Hsp70-bound ADP with ATP. Bacteria and organelles of bacterial origin have only one known NEF type for Hsp70, GrpE. In contrast, a large diversity of Hsp70 NEFs has been discovered in the eukaryotic cell. These NEFs belong to the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families. In this short review we compare the structures and molecular mechanisms of nucleotide exchange factors for Hsp70 and discuss how these cochaperones contribute to protein folding and quality control in the cell.

5.
Subcell Biochem ; 78: 1-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25487014

RESUMO

Molecular chaperones of the Hsp70 family are key components of the cellular protein folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEF) facilitate its conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. Beginning with the discovery of the prototypical bacterial NEF GrpE, a large diversity of Hsp70 nucleotide exchange factors has been identified, connecting Hsp70 to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances towards structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1 and BAG domain protein families and discuss how these cochaperones connect protein folding with quality control and degradation pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glicoproteínas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Glicoproteínas/química , Fatores de Troca do Nucleotídeo Guanina/química , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Homeostase , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Conformação Proteica , Dobramento de Proteína , Proteólise , Transdução de Sinais , Relação Estrutura-Atividade
6.
J Biol Chem ; 289(19): 13155-67, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24671421

RESUMO

Heat shock protein 70 (Hsp70) molecular chaperones play critical roles in protein homeostasis. In the budding yeast Saccharomyces cerevisiae, cytosolic Hsp70 interacts with up to three types of nucleotide exchange factors (NEFs) homologous to human counterparts: Sse1/Sse2 (Heat shock protein 110 (Hsp110)), Fes1 (HspBP1), and Snl1 (Bag-1). All three NEFs stimulate ADP release; however, it is unclear why multiple distinct families have been maintained throughout eukaryotic evolution. In this study we investigate NEF roles in Hsp70 cell biology using an isogenic combinatorial collection of NEF deletion mutants. Utilizing well characterized model substrates, we find that Sse1 participates in most Hsp70-mediated processes and is of particular importance in protein biogenesis and degradation, whereas Fes1 contributes to a minimal extent. Surprisingly, disaggregation and resolubilization of thermally denatured firefly luciferase occurred independently of NEF activity. Simultaneous deletion of SSE1 and FES1 resulted in constitutive activation of heat shock protein expression mediated by the transcription factor Hsf1, suggesting that these two factors are important for modulating stress response. Fes1 was found to interact in vivo preferentially with the Ssa family of cytosolic Hsp70 and not the co-translational Ssb homolog, consistent with the lack of cold sensitivity and protein biogenesis phenotypes for fes1Δ cells. No significant consequence could be attributed to deletion of the minor Hsp110 SSE2 or the Bag homolog SNL1. Together, these lines of investigation provide a comparative analysis of NEF function in yeast that implies Hsp110 is the principal NEF for cytosolic Hsp70, making it an ideal candidate for therapeutic intervention in human protein folding disorders.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Proteínas de Ligação a DNA , Deleção de Genes , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato/fisiologia , Fatores de Transcrição , Transcrição Gênica/fisiologia
7.
Microbiol Mol Biol Rev ; 76(2): 115-58, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22688810

RESUMO

The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.


Assuntos
Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Eukaryot Cell ; 11(8): 1003-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22635919

RESUMO

Heat shock protein 70 (Hsp70) is a highly conserved molecular chaperone that assists in the folding of nascent chains and the repair of unfolded proteins through iterative cycles of ATP binding, hydrolysis, and nucleotide exchange tightly coupled to polypeptide binding and release. Cochaperones, including nucleotide exchange factors (NEFs), modulate the rate of ADP/ATP exchange and serve to recruit Hsp70 to distinct processes or locations. Among three nonrelated cytosolic NEFs in Saccharomyces cerevisiae, the Bag-1 homolog SNL1 is unique in being tethered to the endoplasmic reticulum (ER) membrane. We demonstrate here a novel physical association between Snl1 and the intact ribosome. This interaction is both independent of and concurrent with binding to Hsp70 and is not dependent on membrane localization. The ribosome binding site is identified as a short lysine-rich motif within the amino terminus of the Snl1 BAG domain distinct from the Hsp70 interaction region. Additionally, we demonstrate a ribosome association with the Candida albicans Snl1 homolog and localize this putative NEF to a perinuclear/ER membrane, suggesting functional conservation in fungal BAG domain-containing proteins. We therefore propose that the Snl1 family of NEFs serves a previously unknown role in fungal protein biogenesis based on the coincident recruitment of ribosomes and Hsp70 to the ER membrane.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Candida albicans/metabolismo , Retículo Endoplasmático/metabolismo , Deleção de Genes , Proteínas de Choque Térmico HSP70/metabolismo , Lisina/análise , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Domínios e Motivos de Interação entre Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
J Inorg Biochem ; 99(3): 841-51, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15708806

RESUMO

Bismuth-dithiol mixtures are proven antimicrobial agents with unknown mechanism(s) of action. We show that select bismuth-dithiol solutions inhibit the Escherichia coli rho transcription termination factor. Rho is an essential enzyme in most Gram-negative prokaryotes and without rho function the cells are not viable. Bismuth complexes with 2,3-dimercapto-1-propanol (BiBAL) (3:1 solutions) functioned as a noncompetitive inhibitor with respect to ATP in the rho poly(C)-dependent ATPase assay (I50=60 microM) and as a competitive inhibitor with respect to ribo(C)10 in the poly(dC)-ribo(C)10-dependent ATPase assay. The minimum inhibitory concentration (MIC) of bacterial growth for BiBAL (3:1) in the liquid culture assay using E. coli W3350 was 16 microM. Using the tnaA/lacZ fusion reporter assay we showed that sublethal amounts (3 microM) of BiBAL (3:1 solution) led to a small increase (37%) in in vivo beta-galactosidase activity in E. coli SVS1144, which corresponds to antitermination of the tna operon as a result of rho inhibition. We concluded that BiBAL was a potent in vitro rho inhibitor but its effect on in vivo rho processes was modest indicating that other mechanisms contributed to the antibacterial activity of BiBAL. Our study suggests that structural changes in the dithiol unit that provide greater bismuth binding may improve rho specificity, a macromolecular target not previously recognized for bismuth therapy.


Assuntos
Bismuto/farmacologia , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Fator Rho/antagonistas & inibidores , Tolueno/análogos & derivados , Tolueno/farmacologia , Transcrição Gênica/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Bismuto/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Óperon , Fator Rho/química , Tolueno/química , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA