Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Emerg Infect Dis ; 30(1): 155-158, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147057

RESUMO

After reports in 2017 of Brucella neotomae infections among humans in Costa Rica, we sequenced 12 strains isolated from rodents during 1955-1964 from Utah, USA. We observed an exact strain match between the human isolates and 1 Utah isolate. Independent confirmation is required to clarify B. neotomae zoonotic potential.


Assuntos
Brucella , Brucelose , Humanos , Genômica , Brucella/genética , Brucelose/epidemiologia , Brucelose/veterinária , Costa Rica/epidemiologia
2.
Pathogens ; 12(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887773

RESUMO

Anthrax is a particularly dangerous infection of humans and ungulates caused by the Gram-positive spore-forming bacterium Bacillus anthracis. The highly monomorphic and clonal species B. anthracis is commonly divided into three main lineages, A, B, and C, which in turn are divided into several canSNP groups. We report here a phylogenetic analysis based on the whole-genome sequence (WGS) data of fifteen strains isolated predominantly in Siberia or Central and Southern Russia. We confirm the wide distribution of the cluster of strains of the B.Br.001/002 group, endemic to the Russian Arctic, which is also present in the steppe zone of Southern Siberia. We characterize additional branches within the major A.Br.001/002 polytomy comprising the A.Br.Ames and A.Br.Sterne lineages, one of which is identified in the Arctic.

3.
Front Microbiol ; 14: 1106994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032899

RESUMO

Brucella abortus is the main causative agent of brucellosis in cattle, leading to severe economic consequences in agriculture and affecting public health. The zoonotic nature of the infection increases the need to control the spread and dynamics of outbreaks in animals with the incorporation of high resolution genotyping techniques. Based on such methods, B. abortus is currently divided into three clades, A, B, and C. The latter includes subclades C1 and C2. This study presents the results of whole-genome sequencing of 49 B. abortus strains isolated in Kazakhstan between 1947 and 2015 and of 36 B. abortus strains of various geographic origins isolated from 1940 to 2004. In silico Multiple Locus Sequence Typing (MLST) allowed to assign strains from Kazakhstan to subclades C1 and to a much lower extend C2. Whole-genome Single-Nucleotide Polymorphism (wgSNP) analysis of the 46 strains of subclade C1 with strains of worldwide origins showed clustering with strains from neighboring countries, mostly North Caucasia, Western Russia, but also Siberia, China, and Mongolia. One of the three Kazakhstan strains assigned to subclade C2 matched the B. abortus S19 vaccine strain used in cattle, the other two were genetically close to the 104 M vaccine strain. Bayesian phylodynamic analysis dated the introduction of B. abortus subclade C1 into Kazakhstan to the 19th and early 20th centuries. We discuss this observation in view of the history of population migrations from Russia to the Kazakhstan steppes.

4.
PLoS One ; 17(12): e0279536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36576937

RESUMO

Neisseria meningitidis (meningococcus) is a cosmopolitan bacterium that is often found in the upper respiratory tract of asymptomatic humans. However, N. meningitidis also causes meningeal inflammation and/or sepsis in humans with a periodic resurgence in incidence and high mortality rates. The pathogen is highly diverse genetically and antigenically, so that genotyping is considered important for vaccine matching to circulating strains. Annual incidence of meningococcal disease in Kazakhstan ranges between 0.2 and 2.5 cases per 100 thousand population. In total, 78 strains of N. meningitidis were isolated from clinical patients and contact persons during the years 2017-2018 in Kazakhstan. Of these, 41 strains including four from the patients and 37 from contacts, were sequenced using Illumina MiSeq. In silico typing was completed using the Neisseria pipeline 1.2 on the Galaxy Workflow Management System and PubMLST. Whole genome SNP (single nucleotide polymorphisms) trees were built using BioNumerics 8. Seven-gene multilocus sequence typing (MLST) identified ten sequence types (ST), two of which have not been previously described (ST-16025; ST-16027). ST-16025 was detected in two patients with invasive meningococcal disease in 2017 and 2018 in Akmola region and 16 contacts in 2017 in Turkistan region. This prevalent type ST-16025 demonstrates considerable intertypic diversity as it consists of three subcomplexes with a distance of more than 2000 SNPs. Invasive and carrier strains belong to different serogroups (MenB and MenC), PorA and FetA_VR. Two invasive strains were MenB, one MenC and one MenW (Hajj lineage). The strains from the contact persons were: MenC (n = 18), cnl (n = 9), MenY (n = 7), MenW (n = 1), MenB (n = 1) and one unidentifiable. Different numbers of alleles were present: 12, 11, 7, and 7 alleles for PorA, FetA, fHbp, and NHBA, respectively. This study is the first report of the genetic diversity of N. meningitidis strains in Kazakhstan. Despite limitations with the studied sample size, important conclusions can be drawn based on data produced. This study provides evidence for regulatory authorities with regard to changing routine diagnostic protocols to increase the collecting of samples for WGS.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis , Humanos , Tipagem de Sequências Multilocus , Antígenos de Bactérias/genética , Cazaquistão/epidemiologia , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/microbiologia , Sorogrupo
5.
Front Microbiol ; 12: 778225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956141

RESUMO

This article describes Bacillus anthracis strains isolated in Kazakhstan since the 1950s until year 2016 from sixty-one independent events associated with anthrax in humans and animals. One hundred and fifty-four strains were first genotyped by Multiple Locus VNTR (variable number of tandem repeats) Analysis (MLVA) using 31 VNTR loci. Thirty-five MLVA31 genotypes were resolved, 28 belong to the A1/TEA group, five to A3/Sterne-Ames group, one to A4/Vollum and one to the B clade. This is the first report of the presence of the B-clade in Kazakhstan. The MLVA31 results and epidemiological data were combined to select a subset of seventy-nine representative strains for draft whole genome sequencing (WGS). Strains from Kazakhstan significantly enrich the known phylogeny of the Ames group polytomy, including the description of a new branch closest to the Texas, United States A.Br.Ames sublineage stricto sensu. Three among the seven currently defined branches in the TEA polytomy are present in Kazakhstan, "Tsiankovskii", "Heroin", and "Sanitary Technical Institute (STI)". In particular, strains from the STI lineage are largely predominant in Kazakhstan and introduce numerous deep branching STI sublineages, demonstrating a high geographic correspondence between "STI" and Kazakhstan, Central Asia. This observation is a strong indication that the TEA polytomy emerged after the last political unification of Asian steppes in the fourteenth century of the Common Era. The phylogenetic analysis of the Kazakhstan data and of currently available WGS data of worldwide origin strengthens our understanding of B. anthracis geographic expansions in the past seven centuries.

6.
mSystems ; 6(6): e0040321, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931882

RESUMO

Q (query) fever is an infectious zoonotic disease caused by the Gram-negative bacterium Coxiella burnetii. Although the disease has been studied for decades, it still represents a threat due to sporadic outbreaks across farms in Europe. The absence of a central platform for Coxiella typing data management is an important epidemiological gap that is relevant in the case of an outbreak. To fill this gap, we have designed and implemented an online, open-source, web-based platform called CoxBase (https://coxbase.q-gaps.de). This platform includes a database that holds genotyping information on more than 400 Coxiella isolates alongside metadata that annotate them. We have also implemented features for in silico genotyping of completely or minimally assembled Coxiella sequences using five different typing methods, querying of existing isolates, visualization of isolate geodata via aggregation on a world map, and submission of new isolates. We tested our in silico typing method on 50 Coxiella genomes downloaded from the RefSeq database, and we successfully genotyped all genomes except for cases where the sequence quality was poor. We identified new spacer sequences using our implementation of the multispacer sequence typing (MST) in silico typing method and established adaA gene phenotypes for all 50 genomes as well as their plasmid types. IMPORTANCE Q fever is a zoonotic disease that is a source of active epidemiological concern due to its persistent threat to public health. In this project, we have identified areas in the field of Coxiella research, especially regarding public health and genomic analysis, where there is an inadequacy of resources to monitor, organize, and analyze genomic data from C. burnetii. Subsequently, we have created an open, web-based platform that contains epidemiological information, genome typing functions comprising all the available Coxiella typing methods, and tools for isolate data discovery and visualization that could help address the above-mentioned challenges. This is the first platform to combine all disparate genotyping systems for Coxiella burnetii as well as metadata assets with tools for genomic comparison and analyses. This platform is a valuable resource for laboratory researchers as well as research epidemiologists interested in investigating the relatedness or dissimilarity among C. burnetii strains.

7.
Microbiol Resour Announc ; 10(18)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958398

RESUMO

Since the 1990s, Brucella strains have been isolated from a wide variety of marine mammal species. We report the first complete genome sequence of a Brucella strain isolated from a hooded seal (Cystophora cristata), Brucella pinnipedialis strain 23a-1 of sequence type 54, found in the North Atlantic Ocean surrounding Norway.

8.
PLoS Negl Trop Dis ; 15(5): e0009419, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33999916

RESUMO

Tularemia is a highly dangerous zoonotic infection due to the bacteria Francisella tularensis. Low genetic diversity promoted the use of polymorphic tandem repeats (MLVA) as first-line assay for genetic description. Whole genome sequencing (WGS) is becoming increasingly accessible, opening the perspective of a time when WGS might become the universal genotyping assay. The main goal of this study was to describe F. tularensis strains circulating in Kazakhstan based on WGS data and develop a MLVA assay compatible with in vitro and in silico analysis. In vitro MLVA genotyping and WGS were performed for the vaccine strain and for 38 strains isolated in Kazakhstan from natural water bodies, ticks, rodents, carnivores, and from one migratory bird, an Isabellina wheatear captured in a rodent burrow. The two genotyping approaches were congruent and allowed to attribute all strains to two F. tularensis holarctica lineages, B.4 and B.12. The seven tandem repeats polymorphic in the investigated strain collection could be typed in a single multiplex PCR assay. Identical MLVA genotypes were produced by in vitro and in silico analysis, demonstrating full compatibility between the two approaches. The strains from Kazakhstan were compared to all publicly available WGS data of worldwide origin by whole genome SNP (wgSNP) analysis. Genotypes differing at a single SNP position were collected within a time interval of more than fifty years, from locations separated from each other by more than one thousand kilometers, supporting a role for migratory birds in the worldwide spread of the bacteria.


Assuntos
Francisella/genética , Tularemia/microbiologia , Animais , Francisella/classificação , Francisella/isolamento & purificação , Variação Genética , Genótipo , Cazaquistão/epidemiologia , Reação em Cadeia da Polimerase Multiplex , Polimorfismo de Nucleotídeo Único , Tularemia/epidemiologia , Microbiologia da Água , Sequenciamento Completo do Genoma
9.
Microbiol Resour Announc ; 9(50)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303664

RESUMO

We present a retrospective analysis of strains from two anthrax outbreaks in western Kazakhstan in 2009. The outbreaks occurred during the same period and in the same area located close to main roads, favoring a single source of infection. However, multilocus variable-number tandem-repeat analysis (MLVA), canonical single-nucleotide polymorphism (CanSNP) analysis, and genome-wide analysis demonstrated that the outbreaks were not connected.

10.
Microbiol Resour Announc ; 9(35)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855253

RESUMO

Francisella tularensis subsp. mediasiatica is the least studied among the four F. tularensis subspecies. We present here the genome data of F. tularensis subsp. mediasiatica 240, isolated in the southern region of Kazakhstan.

11.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763927

RESUMO

We report here the draft genome sequences of three strains of Pasteurella multocida isolated in Kazakhstan from domestic animals that died due to hemorrhagic septicemia.

12.
Microbiol Resour Announc ; 9(30)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703839

RESUMO

Moraxella bovoculi strain KZ-1 was isolated from cattle that had symptoms of infectious bovine keratoconjunctivitis (IBK) in northern Kazakhstan. Here, we report the draft genome sequence of this strain.

13.
Antibiotics (Basel) ; 9(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570896

RESUMO

Pseudomonas aeruginosa is responsible for long-term infections and is particularly resistant to treatments when hiding inside the extracellular matrix or biofilms. Phage therapy might represent an alternative to antibiotic treatment, but up to 10% of clinical strains appear to resist multiple phages. We investigated the characteristics of P. aeruginosa clinical strains naturally resistant to phages and compared them to highly susceptible strains. The phage-resistant strains were defective in lipopolysaccharide (LPS) biosynthesis, were nonmotile and displayed an important degree of autolysis, releasing phages and pyocins. Complete genome sequencing of three resistant strains showed the existence of a large accessory genome made of multiple insertion elements, genomic islands, pyocins and prophages, including two phages performing lateral transduction. Mutations were found in genes responsible for the synthesis of LPS and/or type IV pilus, the major receptors for most phages. CRISPR-Cas systems appeared to be absent or inactive in phage-resistant strains, confirming that they do not play a role in the resistance to lytic phages but control the insertion of exogenous sequences. We show that, despite their apparent weakness, the multiphage-resistant strains described in this study displayed selective advantages through the possession of various functions, including weapons to eliminate other strains of the same or closely related species.

14.
Microorganisms ; 8(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466551

RESUMO

Hugh-Jones and Blackburn and Turnbull's collective World Health Organization (WHO) report did literature reviews of the theories and the bases for causes of anthrax outbreaks. Both comment on an often-mentioned suspicion that, even though unproven, latent infections are likely involved. Hugh-Jones suggested Gainer do an updated review of our present-day knowledge of latent infections, which was the basis for Gainer's talk at the Biology of Anthrax Conference in Bari, Italy 2019. At the Conference Gainer met Vergnaud who presented anthrax genome studies that implied that the disease might have spread throughout Asia and from Europe to North America in a short time span of three or four centuries. Vergnaud wondered if latent infections might have played a role in the process. Several other presenters at the Conference also mentioned results that might suggest the existence of latent infections. Vergnaud subsequently looked into some of the old French literature about related observations, results, and discussions of early Pasteur vaccine usage (late 1800's) and found mentions of suspected latent infections. The first part of the paper is a focused summary and interpretation of Hugh-Jones and Blackburn's and Turnbull's reviews specifically looking for suggestions of latent infections, a few additional studies with slightly different approaches, and several mentions made of presentations and posters at the Conference in Italy. In general, many different investigators in different areas and aspects of the anthrax study at the Conference found reasons to suspect the existence of latent infections. The authors conclude that the affected species most studied, including Homo sapiens, provide circumstantial evidence of latent infections and modified host resistance. The last part of the review explores the research needed to prove or disprove the existence of latent infections.

15.
Front Microbiol ; 11: 284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153552

RESUMO

The genus Brucella comprises major pathogenic species causing disease in livestock and humans, e.g. B. melitensis. In the past few years, the genus has been significantly expanded by the discovery of phylogenetically more distant lineages comprising strains from diverse wildlife animal species, including amphibians and fish. The strains represent several potential new species, with B. inopinata as solely named representative. Being genetically more distant between each other, relative to the "classical" Brucella species, they present distinct atypical phenotypes and surface antigens. Among surface protein antigens, the Omp2a and Omp2b porins display the highest diversity in the classical Brucella species. The genes coding for these proteins are closely linked in the Brucella genome and oriented in opposite directions. They share between 85 and 100% sequence identity depending on the Brucella species, biovar, or genotype. Only the omp2b gene copy has been shown to be expressed and genetic variation is extensively generated by gene conversion between the two copies. In this study, we analyzed the omp2 loci of the non-classical Brucella spp. Starting from two distinct ancestral genes, represented by Australian rodent strains and B. inopinata, a stepwise nucleotide reduction was observed in the omp2b gene copy. It consisted of a first reduction affecting the region encoding the surface L5 loop of the porin, previously shown to be critical in sugar permeability, followed by a nucleotide reduction in the surface L8 loop-encoding region. It resulted in a final omp2b gene size shared between two distinct clades of non-classical Brucella spp. (African bullfrog isolates) and the group of classical Brucella species. Further evolution led to complete homogenization of both omp2 gene copies in some Brucella species such as B. vulpis or B. papionis. The stepwise omp2b deletions seemed to be generated through recombination with the respective omp2a gene copy, presenting a conserved size among Brucella spp., and may involve short direct DNA repeats. Successive Omp2b porin alteration correlated with increasing porin permeability in the course of evolution of Brucella spp. They possibly have adapted their porin to survive environmental conditions encountered and to reach their final status as intracellular pathogen.

16.
Arch Virol ; 165(3): 725-730, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31897726

RESUMO

Sixteen bacteriophages of Achromobacter xylosoxidans distributed into four genera have been isolated from sewage water in Abidjan, Côte d'Ivoire, using a single clinical strain, and their genomes have been sequenced. Three podoviruses belonged to the genus Phikmvvirus, and these represent the first A. xylosoxidans phages of this genus. Seven podoviruses, distributed into three groups, belonged to the genus Jwalphavirus. Among the siphoviruses, three revealed similarities to Pseudomonas phage 73 and members of the genus Septimatrevirus, and three were YuA-like phages. The virulence of these phages toward a panel of 10 genetically diverse strains was tested, with the phiKMV-like phages showing the broadest host range.


Assuntos
Achromobacter denitrificans/virologia , Bacteriófagos/genética , Podoviridae/genética , Siphoviridae/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Sequência de Bases , Côte d'Ivoire , Genoma Viral/genética , Especificidade de Hospedeiro , Humanos , Podoviridae/classificação , Podoviridae/isolamento & purificação , Esgotos/microbiologia , Esgotos/virologia , Siphoviridae/classificação , Siphoviridae/isolamento & purificação
17.
Nucleic Acids Res ; 48(D1): D535-D544, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31624845

RESUMO

In Archaea and Bacteria, the arrays called CRISPRs for 'clustered regularly interspaced short palindromic repeats' and the CRISPR associated genes or cas provide adaptive immunity against viruses, plasmids and transposable elements. Short sequences called spacers, corresponding to fragments of invading DNA, are stored in-between repeated sequences. The CRISPR-Cas systems target sequences homologous to spacers leading to their degradation. To facilitate investigations of CRISPRs, we developed 12 years ago a website holding the CRISPRdb. We now propose CRISPRCasdb, a completely new version giving access to both CRISPRs and cas genes. We used CRISPRCasFinder, a program that identifies CRISPR arrays and cas genes and determine the system's type and subtype, to process public whole genome assemblies. Strains are displayed either in an alphabetic list or in taxonomic order. The database is part of the CRISPR-Cas++ website which also offers the possibility to analyse submitted sequences and to download programs. A BLAST search against lists of repeats and spacers extracted from the database is proposed. To date, 16 990 complete prokaryote genomes (16 650 bacteria from 2973 species and 340 archaea from 300 species) are included. CRISPR-Cas systems were found in 36% of Bacteria and 75% of Archaea strains. CRISPRCasdb is freely accessible at https://crisprcas.i2bc.paris-saclay.fr/.


Assuntos
Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Bases de Dados Genéticas , Genoma Arqueal , Genoma Bacteriano , Software , Archaea/classificação , Archaea/enzimologia , Archaea/genética , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Filogenia
19.
Front Microbiol ; 10: 1897, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456793

RESUMO

We describe the genetic diversity of 1327 Brucella strains from human patients in Kazakhstan using multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA). All strains were assigned to the Brucella melitensis East Mediterranean group and clustered into 16 MLVA11 genotypes, nine of which are reported for the first time. MLVA11 genotype 116 predominates (86.8%) and is present all over Kazakhstan indicating existence and temporary preservation of a "founder effect" among B. melitensis strains circulating in Central Eurasia. The diversity pattern observed in humans is highly similar to the pattern previously reported in animals. The diversity observed by MLVA suggested that the epidemiological status of brucellosis in Kazakhstan is the result of the introduction of a few lineages, which have subsequently diversified at the most unstable tandem repeat loci. This investigation will allow to select the most relevant strains for testing these hypotheses via whole genome sequencing and to subsequently adjust the genotyping scheme to the Kazakhstan epidemiological situation.

20.
PLoS Negl Trop Dis ; 13(5): e0007311, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107864

RESUMO

Brucella abortus and B. melitensis have been reported in several studies in animals in Zimbabwe but the extent of the disease remains poorly known. Thus, characterizing the circulating strains is a critical first step in understanding brucellosis in the country. In this study we used an array of molecular assays including AMOS-PCR, Bruce-ladder, multiple locus variable number tandem repeats analysis (MLVA) and single nucleotide polymorphisms from whole genome sequencing (WGS-SNP) to characterize Brucella isolates to the species, biovar, and individual strain level. Sixteen Brucella strains isolated in Zimbabwe at the Central Veterinary laboratory from various hosts were characterized using all or some of these assays. The strains were identified as B. ovis, B. abortus, B. canis and B. suis, with B. canis being the first report of this species in Zimbabwe. Zimbabwean strains identified as B. suis and B. abortus were further characterized with whole genome sequencing and were closely related to reference strains 1330 and 86/8/59, respectively. We demonstrate the range of different tests that can be performed from simple assays that can be run in laboratories lacking sophisticated instrumentation to whole genome analyses that currently require substantial expertise and infrastructure often not available in the developing world.


Assuntos
Brucella abortus/genética , Brucella melitensis/genética , Brucelose/veterinária , Animais , Brucella abortus/classificação , Brucella abortus/isolamento & purificação , Brucella melitensis/classificação , Brucella melitensis/isolamento & purificação , Bovinos , Doenças dos Bovinos/microbiologia , Genoma Bacteriano , Genótipo , Repetições Minissatélites , Filogenia , Ovinos , Doenças dos Ovinos/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Zimbábue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...