Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(1): 166-185, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994698

RESUMO

Eukaryotic cells are thought to arrange nucleosomes into extended arrays with evenly spaced nucleosomes phased at genomic landmarks. Here we tested to what extent this stereotypic organization describes the nucleosome organization in Saccharomyces cerevisiae using Fiber-Seq, a long-read sequencing technique that maps entire nucleosome arrays on individual chromatin fibers in a high throughput manner. With each fiber coming from a different cell, Fiber-Seq uncovers cell-to-cell heterogeneity. The long reads reveal the nucleosome architecture even over repetitive DNA such as the ribosomal DNA repeats. The absolute nucleosome occupancy, a parameter that is difficult to obtain with conventional sequencing approaches, is a direct readout of Fiber-Seq. We document substantial deviations from the stereotypical nucleosome organization with unexpectedly long linker DNAs between nucleosomes, gene bodies missing entire nucleosomes, cell-to-cell heterogeneity in nucleosome occupancy, heterogeneous phasing of arrays and irregular nucleosome spacing. Nucleosome array structures are indistinguishable throughout the gene body and with respect to the direction of transcription arguing against transcription promoting array formation. Acute nucleosome depletion destroyed most of the array organization indicating that nucleosome remodelers cannot efficiently pack nucleosomes under those conditions. Given that nucleosomes are cis-regulatory elements, the cell-to-cell heterogeneity uncovered by Fiber-Seq provides much needed information to understand chromatin structure and function.


Assuntos
Cromatina , Nucleossomos , Cromatina/genética , Nucleossomos/genética , DNA/genética , Genoma , Saccharomyces cerevisiae/genética
2.
J Cell Biol ; 218(4): 1298-1318, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770434

RESUMO

Kinesin-1 is responsible for microtubule-based transport of numerous cellular cargoes. Here, we explored the regulation of kinesin-1 by MAP7 proteins. We found that all four mammalian MAP7 family members bind to kinesin-1. In HeLa cells, MAP7, MAP7D1, and MAP7D3 act redundantly to enable kinesin-1-dependent transport and microtubule recruitment of the truncated kinesin-1 KIF5B-560, which contains the stalk but not the cargo-binding and autoregulatory regions. In vitro, purified MAP7 and MAP7D3 increase microtubule landing rate and processivity of kinesin-1 through transient association with the motor. MAP7 proteins promote binding of kinesin-1 to microtubules both directly, through the N-terminal microtubule-binding domain and unstructured linker region, and indirectly, through an allosteric effect exerted by the kinesin-binding C-terminal domain. Compared with MAP7, MAP7D3 has a higher affinity for kinesin-1 and a lower affinity for microtubules and, unlike MAP7, can be cotransported with the motor. We propose that MAP7 proteins are microtubule-tethered kinesin-1 activators, with which the motor transiently interacts as it moves along microtubules.


Assuntos
Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/enzimologia , Mitocôndrias/enzimologia , Animais , Benzamidas/farmacologia , Células COS , Chlorocebus aethiops , Dicetopiperazinas/farmacologia , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Mitocôndrias/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA