Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 13(7): e4651, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056248

RESUMO

The trafficking and sorting of proteins through the secretory-endolysosomal system is critical for the proper functioning of neurons. Defects in steps of these pathways are associated with neuronal toxicity in various neurodegenerative disorders. The prion protein (PrP) is a glycosylphosphatidylinositol (GPI)-anchored protein that follows the secretory pathway before reaching the cell surface. Following endocytosis from the cell surface, PrP sorts into endosomes and lysosomes for further recycling and degradation, respectively. A few detailed protocols using drug treatments and fluorescent dyes have previously allowed the tracking of PrP trafficking routes in real time in non-neuronal cells. Here, we present a protocol optimized for primary neurons that aims to monitor and/or manipulate the trafficking and sorting of PrP particles at several steps during their secretory-endolysosomal itineraries, including (a) ER export, (b) endocytosis, (c) lysosomal degradation, and (d) accumulation in axonal endolysosomes. These primary neuron live assays allow for the robust quantitation of accumulation and/or degradation of PrP or of other membrane-associated proteins that transition from the ER to the Golgi via the cell surface. Graphical abstract.

2.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993610

RESUMO

Dystrophic axons comprising misfolded mutant prion protein (PrP) aggregates are a characteristic pathological feature in the prionopathies. These aggregates form inside endolysosomes -called endoggresomes-, within swellings that line up the length of axons of degenerating neurons. The pathways impaired by endoggresomes that result in failed axonal and consequently neuronal health, remain undefined. Here, we dissect the local subcellular impairments that occur within individual mutant PrP endoggresome swelling sites in axons. Quantitative high-resolution light and electron microscopy revealed the selective impairment of the acetylated vs tyrosinated microtubule cytoskeleton, while micro-domain image analysis of live organelle dynamics within swelling sites revealed deficits uniquely to the MT-based active transport system that translocates mitochondria and endosomes toward the synapse. Cytoskeletal and defective transport results in the retention of mitochondria, endosomes, and molecular motors at swelling sites, enhancing mitochondria-Rab7 late endosome contacts that induce mitochondrial fission via the activity of Rab7, and render mitochondria dysfunctional. Our findings point to mutant Pr Pendoggresome swelling sites as selective hubs of cytoskeletal deficits and organelle retention that drive the remodeling of organelles along axons. We propose that the dysfunction imparted locally within these axonal micro-domains spreads throughout the axon over time, leading to axonal dysfunction in prionopathies.

3.
Sci Adv ; 7(52): eabg3693, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936461

RESUMO

The pathogenic aggregation of misfolded prion protein (PrP) in axons underlies prion disease pathologies. The molecular mechanisms driving axonal misfolded PrP aggregate formation leading to neurotoxicity are unknown. We found that the small endolysosomal guanosine triphosphatase (GTPase) Arl8b recruits kinesin-1 and Vps41 (HOPS) onto endosomes carrying misfolded mutant PrP to promote their axonal entry and homotypic fusion toward aggregation inside enlarged endomembranes that we call endoggresomes. This axonal rapid endosomal sorting and transport-dependent aggregation (ARESTA) mechanism forms pathologic PrP endoggresomes that impair calcium dynamics and reduce neuronal viability. Inhibiting ARESTA diminishes endoggresome formation, rescues calcium influx, and prevents neuronal death. Our results identify ARESTA as a key pathway for the regulation of endoggresome formation and a new actionable antiaggregation target to ameliorate neuronal dysfunction in the prionopathies.

4.
Curr Biol ; 31(15): 3440-3449.e7, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146484

RESUMO

Macroautophagy (hereafter referred to as autophagy) is a conserved process that promotes cellular homeostasis through the degradation of cytosolic components, also known as cargo. During autophagy, cargo is sequestered into double-membrane vesicles called autophagosomes, which are predominantly transported in the retrograde direction to the perinuclear region to fuse with lysosomes, thus ensuring cargo degradation.1 The mechanisms regulating directional autophagosomal transport remain unclear. The ATG8 family of proteins associates with autophagosome membranes2 and plays key roles in autophagy, including the movement of autophagosomes. This is achieved via the association of ATG8 with adaptor proteins like FYCO1, involved in the anterograde transport of autophagosomes toward the cell periphery.1,3-5 We previously reported that phosphorylation of LC3B/ATG8 on threonine 50 (LC3B-T50) by the Hippo kinase STK4/MST1 is required for autophagy through unknown mechanisms.6 Here, we show that STK4-mediated phosphorylation of LC3B-T50 reduces the binding of FYCO1 to LC3B. In turn, impairment of LC3B-T50 phosphorylation decreases starvation-induced perinuclear positioning of autophagosomes as well as their colocalization with lysosomes. Moreover, a significantly higher number of LC3B-T50A-positive autophagosomes undergo aberrant anterograde movement to axonal tips in mammalian neurons and toward the periphery of mammalian cells. Our data support a role of a nutrient-sensitive STK4-LC3B-FYCO1 axis in the regulation of the directional transport of autophagosomes, a key step of the autophagy process, via the post-translational modification of LC3B.


Assuntos
Autofagossomos , Proteínas Associadas aos Microtúbulos , Processamento de Proteína Pós-Traducional , Animais , Autofagossomos/metabolismo , Autofagia , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação
5.
Biochim Biophys Acta Mol Basis Dis ; 1865(3): 648-660, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625383

RESUMO

AGel amyloidosis, formerly known as familial amyloidosis of the Finnish-type, is caused by pathological aggregation of proteolytic fragments of plasma gelsolin. So far, four mutations in the gelsolin gene have been reported as responsible for the disease. Although D187N is the first identified variant and the best characterized, its structure has been hitherto elusive. Exploiting a recently-developed nanobody targeting gelsolin, we were able to stabilize the G2 domain of the D187N protein and obtained, for the first time, its high-resolution crystal structure. In the nanobody-stabilized conformation, the main effect of the D187N substitution is the impairment of the calcium binding capability, leading to a destabilization of the C-terminal tail of G2. However, molecular dynamics simulations show that in the absence of the nanobody, D187N-mutated G2 further misfolds, ultimately exposing its hydrophobic core and the furin cleavage site. The nanobody's protective effect is based on the enhancement of the thermodynamic stability of different G2 mutants (D187N, G167R and N184K). In particular, the nanobody reduces the flexibility of dynamic stretches, and most notably decreases the conformational entropy of the C-terminal tail, otherwise stabilized by the presence of the Ca2+ ion. A Caenorhabditis elegans-based assay was also applied to quantify the proteotoxic potential of the mutants and determine whether nanobody stabilization translates into a biologically relevant effect. Successful protection from G2 toxicity in vivo points to the use of C. elegans as a tool for investigating the mechanisms underlying AGel amyloidosis and rapidly screen new therapeutics.


Assuntos
Amiloide/toxicidade , Amiloidose/genética , Distrofias Hereditárias da Córnea/genética , Gelsolina/química , Gelsolina/genética , Gelsolina/metabolismo , Anticorpos de Domínio Único/metabolismo , Substituição de Aminoácidos/genética , Amiloide/genética , Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose Familiar/genética , Amiloidose Familiar/metabolismo , Animais , Caenorhabditis elegans , Cálcio/química , Cálcio/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Cristalografia por Raios X , Finlândia , Furina/química , Furina/metabolismo , Gelsolina/toxicidade , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidade , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia
6.
MAbs ; 10(7): 1045-1059, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30111239

RESUMO

The tumor suppressor p53 is of crucial importance in the prevention of cellular transformation. In the presence of cellular stress signals, the negative feedback loop between p53 and Mdm2, its main negative regulator, is disrupted, which results in the activation and stabilization of p53. Via a complex interplay between both transcription-dependent and - independent functions of p53, the cell will go through transient cell cycle arrest, cellular senescence or apoptosis. However, it remains difficult to completely fathom the mechanisms behind p53 regulation and its responses, considering the presence of multiple layers involved in fine-tuning them. In order to take the next step forward, novel research tools are urgently needed. We have developed single-domain antibodies, also known as nanobodies, that specifically bind with the N-terminal transactivation domain of wild type p53, but that leave the function of p53 as a transcriptional transactivator intact. When the nanobodies are equipped with a mitochondrial-outer-membrane (MOM)-tag, we can capture p53 at the mitochondria. This nanobody-induced mitochondrial delocalization of p53 is, in specific cases, associated with a decrease in cell viability and with morphological changes in the mitochondria. These findings underpin the potential of nanobodies as bona fide research tools to explore protein function and to unravel their biochemical pathways.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neoplasias/imunologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Anticorpos de Domínio Único/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Ciclo Celular , Senescência Celular , Humanos , Espaço Intracelular , Domínios Proteicos/genética , Sinais Direcionadores de Proteínas , Transporte Proteico , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
7.
Biomed Pharmacother ; 102: 230-241, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29567535

RESUMO

Cortactin is a multidomain actin binding protein that activates Arp2/3 mediated branched actin polymerization. This is essential for the formation of protrusive structures during cancer cell invasion. Invadopodia are cancer cell-specific membrane protrusions, specialized at extracellular matrix degradation and essential for invasion and tumor metastasis. Given the unequivocal role of cortactin at every stage of invadopodium formation, it is considered an invadopodium marker and potential drug target. We used cortactin nanobodies to examine the role of cortactin domain-specific function at endogenous protein level. Two cortactin nanobodies target the central region of cortactin with high specificity. One nanobody interacts with the actin binding repeats whereas the other targets the proline rich region and was found to reduce EGF-induced cortactin phosphorylation. After intracellular expression as an intrabody, they are both capable of tracing their target in the complex environment of the cytoplasm, and disturb cortactin functions during invadopodia formation and extracellular matrix degradation. These data illustrate the use of nanobodies as a research tool to dissect the role of cortactin in cancer cell motility. This information can contribute to the development of novel therapeutics for tumor cell migration and metastasis.


Assuntos
Actinas/metabolismo , Extensões da Superfície Celular/metabolismo , Cortactina/metabolismo , Matriz Extracelular/patologia , Invasividade Neoplásica , Prolina/metabolismo , Anticorpos de Domínio Único/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Proteínas dos Microfilamentos/metabolismo , Neoplasias de Células Escamosas/metabolismo , Neoplasias de Células Escamosas/patologia , Ligação Proteica , Domínios Proteicos
8.
PLoS One ; 12(9): e0185076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28938008

RESUMO

Invasive cancer cells develop small actin-based protrusions called invadopodia, which perform a primordial role in metastasis and extracellular matrix remodelling. Neural Wiskott-Aldrich syndrome protein (N-WASp) is a scaffold protein which can directly bind to actin monomers and Arp2/3 and is a crucial player in the formation of an invadopodium precursor. Expression modulation has pointed to an important role for N-WASp in invadopodium formation but the role of its C-terminal VCA domain in this process remains unknown. In this study, we generated alpaca nanobodies against the N-WASp VCA domain and investigated if these nanobodies affect invadopodium formation. By using this approach, we were able to study functions of a selected functional/structural N-WASp protein domain in living cells, without requiring overexpression, dominant negative mutants or siRNAs which target the gene, and hence the entire protein. When expressed as intrabodies, the VCA nanobodies significantly reduced invadopodium formation in both MDA-MB-231 breast cancer and HNSCC61 head and neck squamous cancer cells. Furthermore, expression of distinct VCA Nbs (VCA Nb7 and VCA Nb14) in PC-3 prostate cancer cells resulted in reduced overall matrix degradation without affecting MMP9 secretion/activation or MT1-MMP localisation at invadopodial membranes. From these results, we conclude that we have generated nanobodies targeting N-WASp which reduce invadopodium formation and functioning, most likely via regulation of N-WASp-Arp2/3 complex interaction, indicating that this region of N-WASp plays an important role in these processes.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Podossomos/metabolismo , Anticorpos de Domínio Único/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/imunologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Afinidade de Anticorpos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Células HEK293 , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Espaço Intracelular/metabolismo , Masculino , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Neoplasias de Células Escamosas/metabolismo , Neoplasias de Células Escamosas/patologia , Podossomos/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Domínios Proteicos , Anticorpos de Domínio Único/imunologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química
10.
Hum Mol Genet ; 26(7): 1353-1364, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334940

RESUMO

Gelsolin amyloidosis is a dominantly inherited, incurable type of amyloidosis. A single point mutation in the gelsolin gene (G654A is most common) results in the loss of a Ca2+ binding site in the second gelsolin domain. Consequently, this domain partly unfolds and exposes an otherwise buried furin cleavage site at the surface. During secretion of mutant plasma gelsolin consecutive cleavage by furin and MT1-MMP results in the production of 8 and 5 kDa amyloidogenic peptides. Nanobodies that are able to (partly) inhibit furin or MT1-MMP proteolysis have previously been reported. In this study, the nanobodies have been combined into a single bispecific format able to simultaneously shield mutant plasma gelsolin from intracellular furin and extracellular MT1-MMP activity. We report the successful in vivo expression of this bispecific nanobody following adeno-associated virus serotype 9 gene therapy in gelsolin amyloidosis mice. Using SPECT/CT and immunohistochemistry, a reduction in gelsolin amyloid burden was detected which translated into improved muscle contractile properties. We conclude that a nanobody-based gene therapy using adeno-associated viruses shows great potential as a novel strategy in gelsolin amyloidosis and potentially other amyloid diseases.


Assuntos
Amiloidose/genética , Amiloidose/terapia , Gelsolina/genética , Terapia Genética , Amiloidose/patologia , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/uso terapêutico , Dependovirus/genética , Dependovirus/imunologia , Modelos Animais de Doenças , Furina/imunologia , Furina/uso terapêutico , Gelsolina/imunologia , Humanos , Metaloproteinase 14 da Matriz/imunologia , Metaloproteinase 14 da Matriz/uso terapêutico , Camundongos , Mutação Puntual/genética , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia
11.
Sci Rep ; 6: 31177, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27514728

RESUMO

Survivin, the smallest member of the inhibitor of apoptosis protein family, plays a central role during mitosis and exerts a cytoprotective function. Survivin is highly expressed in most cancer types and contributes to multiple facets of carcinogenesis. The molecular mechanisms underlying its highly diverse functions need to be extensively explored, which is crucial for rational design of future personalized therapeutics. In this study, we have generated an alpaca survivin nanobody (SVVNb8) that binds with low nanomolar affinity to its target. When expressed as an intrabody in HeLa cells, SVVNb8 faithfully tracks survivin during different phases of mitosis without interfering with survivin function. Furthermore, coupling SVVNb8 with a subcellular delocalization tag efficiently redirects endogenous survivin towards the nucleus, the cytoplasm, peroxisomes and even to the intermembrane space of mitochondria where it presumably interacts with resident mitochondrial survivin. Based on our findings, we believe that SVVNb8 is an excellent instrument to further elucidate survivin biology and topography, and can serve as a model system to investigate mitochondrial and peroxisomal (survivin) protein import.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Organelas/metabolismo , Frações Subcelulares/metabolismo , Linhagem Celular , Humanos , Proteínas Inibidoras de Apoptose/imunologia , Anticorpos de Domínio Único/imunologia , Survivina
12.
Mol Imaging Biol ; 18(6): 887-897, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27130233

RESUMO

PURPOSE: Gelsolin amyloidosis (AGel), also known as familial amyloidosis, Finnish type (FAF), is an autosomal, dominant, incurable disease caused by a point mutation (G654A/T) in the gelsolin (GSN) gene. The mutation results in loss of a Ca2+-binding site in the second gelsolin domain. Subsequent incorrect folding exposes a cryptic furin cleavage site, leading to the formation of a 68-kDa C-terminal cleavage product (C68) in the trans-Golgi network. This C68 fragment is cleaved by membrane type 1-matrix metalloproteinase (MT1-MMP) during secretion into the extracellular environment, releasing 8- and 5-kDa amyloidogenic peptides. These peptides aggregate and cause disease-associated symptoms. We set out to investigate whether AGel-specific nanobodies could be used to monitor amyloidogenic gelsolin buildup. PROCEDURES: Three nanobodies (FAF Nb1-3) raised against the 8-kDa fragment were screened as AGel amyloid imaging agents in WT and AGel mice using 99mTc-based single-photon emission computed tomography (SPECT)/X-ray tomography (CT), biodistribution analysis, and immunofluorescence (IF). The quantitative characteristics were analyzed in a follow-up study with a Nb11-expressing mouse model. RESULTS: All three nanobodies possess the characteristics desired for a 99mTc-based SPECT/CT imaging agent, high specificity and a low background signal. FAF Nb1 was identified as the most potent, based on its superior signal-to-noise ratio and signal specificity. As a proof of concept, we implemented 99mTc-FAF Nb1 in a follow-up study of the Nb11-expressing AGel mouse model. Using biodistribution analysis and immunofluorescence, we demonstrated the validity of the data acquired via 99mTc-FAF Nb1 SPECT/CT. CONCLUSION: These findings demonstrate the potential of this nanobody as a non-invasive tool to image amyloidogenic gelsolin deposition and assess the therapeutic capacity of AGel therapeutics currently under development. We propose that this approach can be extended to other amyloid diseases, thereby contributing to the development of specific therapies.


Assuntos
Amiloide/metabolismo , Amiloidose Familiar/diagnóstico por imagem , Anticorpos de Domínio Único/química , Tecnécio/química , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Animais , Especificidade de Anticorpos/imunologia , Sítios de Ligação , Modelos Animais de Doenças , Imunofluorescência , Gelsolina/química , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Razão Sinal-Ruído , Coloração e Rotulagem , Distribuição Tecidual
13.
Hum Mol Genet ; 24(9): 2492-507, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25601851

RESUMO

Hereditary gelsolin amyloidosis is an autosomal dominantly inherited amyloid disorder. A point mutation in the GSN gene (G654A being the most common one) results in disturbed calcium binding by the second gelsolin domain (G2). As a result, the folding of G2 is hampered, rendering the mutant plasma gelsolin susceptible to a proteolytic cascade. Consecutive cleavage by furin and MT1-MMP-like proteases generates 8 and 5 kDa amyloidogenic peptides that cause neurological, ophthalmological and dermatological findings. To this day, no specific treatment is available to counter the pathogenesis. Using GSN nanobody 11 as a molecular chaperone, we aimed to protect mutant plasma gelsolin from furin proteolysis in the trans-Golgi network. We report a transgenic, GSN nanobody 11 secreting mouse that was used for crossbreeding with gelsolin amyloidosis mice. Insertion of the therapeutic nanobody gene into the gelsolin amyloidosis mouse genome resulted in improved muscle contractility. X-ray crystal structure determination of the gelsolin G2:Nb11 complex revealed that Nb11 does not directly block the furin cleavage site. We conclude that nanobodies can be used to shield substrates from aberrant proteolysis and this approach might establish a novel therapeutic strategy in amyloid diseases.


Assuntos
Amiloide/metabolismo , Amiloidose Familiar/metabolismo , Retículo Endoplasmático/metabolismo , Gelsolina/metabolismo , Anticorpos de Domínio Único/farmacologia , Amiloidose Familiar/genética , Amiloidose Familiar/fisiopatologia , Animais , Modelos Animais de Doenças , Furina/metabolismo , Gelsolina/antagonistas & inibidores , Gelsolina/química , Gelsolina/genética , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Contração Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Mutação , Ligação Proteica , Conformação Proteica , Proteólise/efeitos dos fármacos , Anticorpos de Domínio Único/química , Rede trans-Golgi/metabolismo
14.
Nucleic Acids Res ; 42(20): 12928-38, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25324313

RESUMO

The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds 'structural' mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations.


Assuntos
Anticorpos de Domínio Único/farmacologia , Ativação Transcricional/efeitos dos fármacos , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/imunologia , Linhagem Celular , Humanos , Modelos Moleculares , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Anticorpos de Domínio Único/imunologia , Proteína Supressora de Tumor p53/antagonistas & inibidores
15.
Mol Ther ; 22(10): 1768-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25023329

RESUMO

Gelsolin amyloidosis is an autosomal dominant incurable disease caused by a point mutation in the GSN gene (G654A/T), specifically affecting secreted plasma gelsolin. Incorrect folding of the mutant (D187N/Y) second gelsolin domain leads to a pathological proteolytic cascade. D187N/Y gelsolin is first cleaved by furin in the trans-Golgi network, generating a 68 kDa fragment (C68). Upon secretion, C68 is cleaved by MT1-MMP-like proteases in the extracellular matrix, releasing 8 kDa and 5 kDa amyloidogenic peptides which aggregate in multiple tissues and cause disease-associated symptoms. We developed nanobodies that recognize the C68 fragment, but not native wild type gelsolin, and used these as molecular chaperones to mitigate gelsolin amyloid buildup in a mouse model that recapitulates the proteolytic cascade. We identified gelsolin nanobodies that potently reduce C68 proteolysis by MT1-MMP in vitro. Converting these nanobodies into an albumin-binding format drastically increased their serum half-life in mice, rendering them suitable for intraperitoneal injection. A 12-week treatment schedule of heterozygote D187N gelsolin transgenic mice with recombinant bispecific gelsolin-albumin nanobody significantly decreased gelsolin buildup in the endomysium and concomitantly improved muscle contractile properties. These findings demonstrate that nanobodies may be of considerable value in the treatment of gelsolin amyloidosis and related diseases.


Assuntos
Amiloide/metabolismo , Amiloidose/metabolismo , Gelsolina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Chaperonas Moleculares/metabolismo , Anticorpos de Domínio Único/metabolismo , Amiloidose Familiar/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/metabolismo , Especificidade de Anticorpos/imunologia , Modelos Animais de Doenças , Gelsolina/química , Gelsolina/imunologia , Humanos , Camundongos , Chaperonas Moleculares/química , Chaperonas Moleculares/imunologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Anticorpos de Domínio Único/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...