Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 44(2): 123-38, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15942939

RESUMO

A systematic search by Southern blot analysis in a cohort of 439 hereditary nonpolyposis colorectal cancer (HNPCC) families for genomic rearrangements in the main mismatch repair (MMR) genes, namely, MSH2, MLH1, MSH6, and PMS2, identified 48 genomic rearrangements causative of this inherited predisposition to colorectal cancer in 68 unrelated kindreds. Twenty-nine of the 48 rearrangements were found in MSH2, 13 in MLH1, 2 in MSH6, and 4 in PMS2. The vast majority were deletions, although one previously described large inversion, an intronic insertion, and a more complex rearrangement also were found. Twenty-four deletion breakpoints have been identified and sequenced in order to determine the underlying recombination mechanisms. Most fall within repetitive sequences, mainly Alu repeats, in agreement with the differential distribution of deletions between the MSH2 and MLH1 genes: the higher number and density of Alu repeats in MSH2 corresponded with a higher incidence of genomic rearrangement at this disease locus when compared with other MMR genes. Long interspersed nuclear element (LINE) repeats, relatively abundant in, for example, MLH1, did not seem to contribute to the genesis of the deletions, presumably because of their older evolutionary age and divergence among individual repeat units when compared with short interspersed nuclear element (SINE) repeats, including Alu repeats. Moreover, Southern blot analysis of the introns and the genomic regions flanking the MMR genes allowed us to detect 6 novel genomic rearrangements that left the coding region of the disease-causing gene intact. These rearrangements comprised 4 deletions upstream of the coding region of MSH2 (3 cases) and MSH6 (1 case), a 2-kb insertion in intron 7 of PMS2, and a small (459-bp) deletion in intron 13 of MLH1. The characterization of these genomic rearrangements underlines the importance of genomic deletions in the etiology of HNPCC and will facilitate the development of PCR-based tests for their detection in diagnostic laboratories.


Assuntos
Adenosina Trifosfatases/genética , Pareamento Incorreto de Bases , Neoplasias Colorretais Hereditárias sem Polipose/genética , Enzimas Reparadoras do DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Deleção de Genes , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Adaptadoras de Transdução de Sinal , Southern Blotting , Proteínas de Transporte , Rearranjo Gênico , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...