Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 143: 109190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890737

RESUMO

The sensitivity to stress and its impact on immunity are supposedly related to a fish's personality. In the present study, European perch (Perca fluviatilis) were exposed to an open-field and a novel-object test to identify distinctive shy and bold individuals. This series of cognitive tests revealed clear differences between proactive individuals with pronounced exploration behavior (bold personality) and reactive individuals that took a freeze-hide position (shy personality). A cohort of shy and bold perch was then exposed to elevated stocking density. Frozen activity and lower explorative behavior were related to higher basal and stocking-induced cortisol levels compared to proactive individuals. Since cortisol is a well-known modulator of immune-gene expression, we used multiplex real-time PCR to profile the differential immune responses to the intraperitoneal injection of Aeromonas hydrophila in the head kidney and peritoneal cells of bold and shy perch individuals. These expression differences between stimulated bold and shy perch were generally modest, except for the genes encoding the complement component c3 and the matrix metallopeptidase mmp9. The strong differential expression of these two bactericidal and inflammatory genes in the context of the modestly regulated features suggests that a fish's personality is linked to a particular immune-defense strategy. In conclusion, our approach, based on behavioral video observations, phagocytosis and enzyme assays, immunogene-expression profiling, and quantification of stress-relevant metabolites, revealed indications for divergent coping styles in cohorts of bold or shy European perch. This divergence could be exploited in future selective breeding programs.


Assuntos
Percas , Humanos , Animais , Hidrocortisona , Personalidade , Aquicultura
2.
Cell Biol Int ; 47(3): 548-559, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36349563

RESUMO

In this study, a cell line of the fish species Coregonus maraena was produced for the first time. C. maraena is an endangered species, and studies indicate that this fish species will be affected by further population declines due to climate change. This cell line, designated CMAfin1, has been maintained in Leibovitz L-15 supplemented with 10% fetal bovine serum over 3 years. Both subculturing and storage (short-term storage at -80°C and long-term storage in liquid nitrogen) was successful. Cell morphology and growth rate were consistent from passage 10 onwards. Immunocytochemical examination of cellular proteins and matrix components confirmed the mechanical stability of the cells. Actin, fibronectin, vinculin, vimentin, and tubulin are present in the cells and form a network. In addition, the transport of molecules is ensured by the necessary proteins. Gene expression analysis showed a shift in the expressions of stem cell markers between younger and higher passages. While SOX2 and IGF1 were more highly expressed in the seventh passage, SOX9 and IGF2 expressions were significantly increased in higher passages. Therefore, the stable cell culture CMAfin1 can be used for applied analysis to further understand the cell physiology of C. maranea.


Assuntos
Salmonidae , Animais , Salmonidae/genética , Linhagem Celular
3.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203361

RESUMO

Micro RNAs (miRNAs) are short non-coding RNAs that act as post-transcriptional gene expression regulators. Genes regulated in vertebrates include those affecting growth and development or stress and immune response. Pikeperch (Sander lucioperca) is a species that is increasingly being considered for farming in recirculation aquaculture systems. We characterized the pikeperch miRNA repertoire to increase the knowledge of the genomic mechanisms affecting performance and health traits by applying small RNA sequencing to different developmental stages and organs. There were 234 conserved and 8 novel miRNA genes belonging to 104 families. A total of 375 unique mature miRNAs were processed from these genes. Many mature miRNAs showed high relative abundances or were significantly more expressed at early developmental stages, like the miR-10 and miR-430 family, let-7, the miRNA clusters 106-25-93, and 17-19-92. Several miRNAs associated with immune responses (e.g., slu-mir-731-5p, slu-mir-2188-5p, and slu-mir-8159-5p) were enriched in the spleen. The mature miRNAs slu-mir-203a-3p and slu-mir-205-5p were enriched in gills. These miRNAs are similarly abundant in many vertebrates, indicating that they have shared regulatory functions. There was also a significantly increased expression of the disease-associated miR-462/miR-731 cluster in response to hypoxia stress. This first pikeperch miRNAome reference resource paves the way for future functional studies to identify miRNA-associated variations that can be utilized in marker-assisted breeding programs.


Assuntos
MicroRNAs , Humanos , Animais , MicroRNAs/genética , Agricultura , Aquicultura , Cruzamento , Genômica
4.
Mol Immunol ; 142: 120-129, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979452

RESUMO

Fungal diseases of fish are a significant economic problem in aquaculture. Using high-throughput expression analysis, we identified potential transcript markers in primary head kidney and secondary embryonic cells from salmonid fish after stimulation with the inactivated fungi Mucor hiemalis and Fusarium aveneacium and with purified fungal molecular patterns. The transcript levels of most of the 45 selected genes were altered in head-kidney cells after 24 h of stimulation with fungal antigens. Stimulation with the inactivated fungus M. hiemalis induced the most pronounced transcriptional changes, including the pathogen receptor-encoding genes CLEC18A and TLR22, the cytokine-encoding genes IL6 and TNF, and the gene encoding the antimicrobial peptide LEAP2. In parallel, we analyzed the total GlcNAcylation status of embryonic salmonid cells with or without stimulation with inactivated fungi. O-GlcNAcylation modulates gene expression, intracellular protein, and signal activity, but we detected no significant differences after a 3-h stimulation. A pathway analysis tool identified the "apoptosis of leukocytes" based on the expression profile 24 h after fungal stimulation. Fluorescence microscopy combined with flow cytometry revealed apoptosis in 50 % of head-kidney leukocytes after 3 h stimulation with M. hiemalis, but this level decreased by > 5% after 24 h of stimulation. The number of apoptotic cells significantly increased in all blood cells after a 3-h stimulation with fungal molecular patterns compared to unstimulated controls. This in vitro approach identified transcript-based parameters that were strongly modulated by fungal infections of salmonid fish.


Assuntos
Acetilglucosamina/química , Fusarium/imunologia , Mucor/imunologia , Micoses/imunologia , Oncorhynchus mykiss/microbiologia , Salmão/microbiologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Apoptose/fisiologia , Doenças dos Peixes/microbiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Rim Cefálico/metabolismo , Interleucina-6/genética , Lectinas Tipo C/genética , Processamento de Proteína Pós-Traducional , Receptor 3 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética
5.
Cells ; 10(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571938

RESUMO

Promising efforts are ongoing to extend genomics resources for pikeperch (Sander lucioperca), a species of high interest for the sustainable European aquaculture sector. Although previous work, including reference genome assembly, transcriptome sequence, and single-nucleotide polymorphism genotyping, added a great wealth of genomic tools, a comprehensive characterization of gene expression across major tissues in pikeperch still remains an unmet research need. Here, we used deep RNA-Sequencing of ten vital tissues collected in eight animals to build a high-confident and annotated trancriptome atlas, to detect the tissue-specificity of gene expression and co-expression network modules, and to investigate genome-wide selective signatures in the Percidae fish family. Pathway enrichment and protein-protein interaction network analyses were performed to characterize the unique biological functions of tissue-specific genes and co-expression modules. We detected strong functional correlations and similarities of tissues with respect to their expression patterns-but also significant differences in the complexity and composition of their transcriptomes. Moreover, functional analyses revealed that tissue-specific genes essentially play key roles in the specific physiological functions of the respective tissues. Identified network modules were also functionally coherent with tissues' main physiological functions. Although tissue specificity was not associated with positive selection, several genes under selection were found to be involved in hypoxia, immunity, and gene regulation processes, that are crucial for fish adaption and welfare. Overall, these new resources and insights will not only enhance the understanding of mechanisms of organ biology in pikeperch, but also complement the amount of genomic resources for this commercial species.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Percas/metabolismo , Mapas de Interação de Proteínas , Seleção Genética , Transcriptoma , Animais , Genoma , Anotação de Sequência Molecular , Especificidade de Órgãos , Percas/genética
6.
Biology (Basel) ; 10(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34356504

RESUMO

Inadequate oxygen saturation can induce stress responses in fish and further affect their immunity. Pikeperch, recently introduced in intensive aquaculture, is suggested to be reared at nearly 100% DO (dissolved oxygen), yet this recommendation can be compromised by several factors including the water temperature, stocking densities or low circulation. Herein, we aimed to investigate the effect of low oxygen saturation of 40% DO (±3.2 mg/L) over 28 days on pikeperch farmed in recirculating aquaculture systems. The obtained data suggest that-although the standard blood and health parameters did not reveal any significant differences at any timepoint-the flow cytometric analysis identified a slightly decreased proportion of lymphocytes in the HK (head kidney) of fish exposed to hypoxia. This has been complemented by marginally downregulated expression of investigated immune and stress genes in HK and liver (including FTH1, HIF1A and NR3C1). Additionally, in the model of acute peritoneal inflammation induced with inactivated Aeromonas hydrophila, we observed a striking dichotomy in the sensitivity to the low DO between innate and adaptive immunity. Thus, while the mobilization of myeloid cells from HK to blood, spleen and peritoneal cavity, underlined by changes in the expression of key proinflammatory cytokines (including MPO, IL1B and TNF) was not influenced by the low DO, hypoxia impaired the influx of lymphocytes to the peritoneal niche in the later phases of the immune reaction. Taken together, our data suggest high robustness of pikeperch towards the low oxygen saturation and further encourage its introduction to the intensive aquaculture systems.

7.
Fish Physiol Biochem ; 47(2): 515-532, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33559015

RESUMO

There are still numerous difficulties in the successful farming of pikeperch in the anthropogenic environment of various aquaculture systems, especially during early developmental steps in the hatchery. To investigate the physiological processes involved on the molecular level, we determined the basal expression patterns of 21 genes involved in stress and immune responses and early ontogenesis of pikeperch between 0 and 175 days post hatch (dph). Their transcription patterns most likely reflect the challenges of growth and feed conversion. The gene coding for apolipoprotein A (APOE) was strongly expressed at 0 dph, indicating its importance for yolk sac utilization. Genes encoding bone morphogenetic proteins 4 and 7 (BMP4, BMP7), creatine kinase M (CKM), and SRY-box transcription factor 9 (SOX9) were highly abundant during the peak phases of morphological changes and acclimatization processes at 4-18 dph. The high expression of genes coding for peroxisome proliferator-activated receptors alpha and delta (PPARA, PPARD) at 121 and 175 dph, respectively, suggests their importance during this strong growth phase of juvenile stages. As an alternative experimental model to replace further in vivo investigations of ontogenetically important processes, we initiated the first approach towards a long-lasting primary cell culture from whole pikeperch embryos. The present study provides a set of possible biomarkers to support the monitoring of pikeperch farming and provides a first basis for the establishment of a suitable cell model of this emerging aquaculture species.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Perciformes/crescimento & desenvolvimento , Estresse Fisiológico , Animais , Técnicas de Cultura de Células , Células Cultivadas , Embrião não Mamífero , Desenvolvimento Embrionário , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Transcriptoma
8.
Sci Rep ; 10(1): 22335, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339898

RESUMO

Pikeperch (Sander lucioperca) is a fish species with growing economic significance in the aquaculture industry. However, successful positioning of pikeperch in large-scale aquaculture requires advances in our understanding of its genome organization. In this study, an ultra-high density linkage map for pikeperch comprising 24 linkage groups and 1,023,625 single nucleotide polymorphisms markers was constructed after genotyping whole-genome sequencing data from 11 broodstock and 363 progeny, belonging to 6 full-sib families. The sex-specific linkage maps spanned a total of 2985.16 cM in females and 2540.47 cM in males with an average inter-marker distance of 0.0030 and 0.0026 cM, respectively. The sex-averaged map spanned a total of 2725.53 cM with an average inter-marker distance of 0.0028 cM. Furthermore, the sex-averaged map was used for improving the contiguity and accuracy of the current pikeperch genome assembly. Based on 723,360 markers, 706 contigs were anchored and oriented into 24 pseudomolecules, covering a total of 896.48 Mb and accounting for 99.47% of the assembled genome size. The overall contiguity of the assembly improved with a scaffold N50 length of 41.06 Mb. Finally, an updated annotation of protein-coding genes and repetitive elements of the enhanced genome assembly is provided at NCBI.


Assuntos
Ligação Genética/genética , Genoma/genética , Percas/genética , Locos de Características Quantitativas/genética , Animais , Mapeamento Cromossômico , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética
9.
Sci Rep ; 10(1): 14913, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913268

RESUMO

The objective of the present study is to identify and evaluate informative indicators for the welfare of rainbow trout exposed to (A) a water temperature of 27 °C and (B) a stocking density of 100 kg/m3 combined with a temperature of 27 °C. The spleen-somatic and condition index, haematocrit and the concentrations of haemoglobin, plasma cortisol and glucose revealed non-significant differences between the two stress groups and the reference group 8 days after the onset of the experiments. The transcript abundance of almost 1,500 genes was modulated at least twofold in in the spleen of rainbow trout exposed to a critical temperature alone or a critical temperature combined with crowding as compared to the reference fish. The number of differentially expressed genes was four times higher in trout that were simultaneously challenged with high temperature and crowding, compared to trout challenged with high temperature alone. Based on these sets of differentially expressed genes, we identified unique and common tissue- and stress type-specific pathways. Furthermore, our subsequent immunologic analyses revealed reduced bactericidal and inflammatory activity and a significantly altered blood-cell composition in challenged versus non-challenged rainbow trout. Altogether, our data demonstrate that heat and overstocking exert synergistic effects on the rainbow trout's physiology, especially on the immune system.


Assuntos
Aglomeração , Proteínas de Peixes/metabolismo , Resposta ao Choque Térmico , Sistema Imunitário/imunologia , Oncorhynchus mykiss/imunologia , Transcriptoma , Animais , Biologia Computacional , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Glucose/metabolismo , Hemoglobinas/análise , Hidrocortisona/sangue , Oncorhynchus mykiss/genética , Baço/imunologia , Baço/metabolismo
10.
Fish Shellfish Immunol ; 106: 1004-1013, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32890762

RESUMO

Two structurally similar NF-κB-inhibitor-interacting Ras-like proteins (NKIRAS) regulate the activity of the transcription factor NF-κB and thereby control several early immune mechanisms in mammals. We identified the orthologous sequences of NKIRAS1 and NKIRAS2 from the rainbow trout Oncorhynchus mykiss. The level of sequence identity was similarly high (≥68%) between the two and in comparison to their mammalian counterparts. Strikingly, NKIRAS2 was present as four transcript variants. These variants differed only in length and in the nucleotide composition of their 5' termini and were most likely generated by splicing along unconventional splice sites. The shortest NKIRAS2 variant was most strongly expressed in a lymphocyte-enriched population, while NKIRAS1 was most strongly expressed in cells of myeloid origin. Fluorescent-labelled NKIRAS1 and NKIRAS2 proteins from rainbow trout were detected in close association with the p65 subunit of NF-κB in the nucleus and cytoplasm of CHSE-214 cells. Subsequent reporter-gene experiments revealed that NKIRAS1 and a longer NKIRAS2 variant in rainbow trout decreased the level of activated NF-κB, while the two shortest NKIRAS2 variants increased the NF-κB activity. In addition, the overexpression of the shortest NKIRAS2 variant in CHSE-214 cells induced a stronger transcription of the genes encoding the pro-inflammatory cytokines TNF, CXCL8, and IL1B compared to non-transfected control cells. This is the first characterisation of NKIRAS orthologues in bony fish and provides additional information to the as yet underexplored inhibition pathways of NF-κB in lower vertebrates.


Assuntos
Proteínas de Transporte/imunologia , Citocinas/genética , Proteínas de Peixes/imunologia , NF-kappa B/imunologia , Oncorhynchus mykiss/imunologia , Aeromonas salmonicida , Animais , Proteínas de Transporte/genética , Linhagem Celular , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Oncorhynchus mykiss/genética
11.
Genes (Basel) ; 11(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722051

RESUMO

Selective breeding can significantly improve the establishment of sustainable and profitable aquaculture fish farming. For rainbow trout (Oncorhynchus mykiss), one of the main aquaculture coldwater species in Europe, a variety of selected hatchery strains are commercially available. In this study, we investigated the genetic variation between the local Born strain, selected for survival, and the commercially available Silver Steelhead strain, selected for growth. We sequenced the transcriptome of six tissues (gills, head kidney, heart, liver, spleen, and white muscle) from eight healthy individuals per strain, using RNA-seq technology to identify strain-specific gene-expression patterns and single nucleotide polymorphisms (SNPs). In total, 1760 annotated genes were differentially expressed across all tissues. Pathway analysis assigned them to different gene networks. We also identified a set of SNPs, which are heterozygous for one of the two breeding strains: 1229 of which represent polymorphisms over all tissues and individuals. Our data indicate a strong genetic differentiation between Born and Silver Steelhead trout, despite the relatively short time of evolutionary separation of the two breeding strains. The results most likely reflect their specifically adapted genotypes and might contribute to the understanding of differences regarding their robustness toward high stress and pathogenic challenge described in former studies.


Assuntos
Redes Reguladoras de Genes , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oncorhynchus mykiss/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Animais , Anotação de Sequência Molecular , Oncorhynchus mykiss/classificação , Oncorhynchus mykiss/crescimento & desenvolvimento , Especificidade da Espécie
12.
Front Immunol ; 10: 2246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616422

RESUMO

The interleukin-1-receptor-associated kinase 3 (IRAK3) is known in mammals as a negative feedback regulator of NF-κB-mediated innate-immune mechanisms. Our RNA-seq experiments revealed a prototypic 1920-nt sequence encoding irak3 from rainbow trout (Oncorhynchus mykiss), as well as 20 variants that vary in length and nucleotide composition. Based on the DNA-sequence information from two closely related irak3 genes from rainbow trout and an irak3-sequence fragment from Atlantic salmon retrieved from public databases, we elucidated the underlying genetic causes for this striking irak3 diversity. Infecting rainbow trout with a lethal dose of Aeromonas salmonicida enhanced the expression of all variants in the liver, head kidney, and peripheral blood leucocytes. We analyzed the functional impact of the full-length factor and selected structural variants by overexpressing them in mammalian HEK-293 cells. The full-length factor enhanced the basal activity of NF-κB, but did not dampen the TLR2-signaling-induced levels of NF-κB activation. Increasing the basal NF-κB-activity through Irak3 apparently does not involve its C-terminal domain. However, more severely truncated factors had only a minor impact on the activity of NF-κB. The TLR2-mediated stimulation did not alter the spatial distribution of Irak3 inside the cells. In salmonid CHSE-214 cells, we observed that the Irak3-splice variant that prominently expresses the C-terminal domain significantly quenched the stimulation-dependent production of interleukin-1ß and interleukin-8, but not the production of other immune regulators. We conclude that the different gene and splice variants of Irak3 from trout play distinct roles in the activation of immune-regulatory mechanisms.


Assuntos
Proteínas de Peixes/genética , Variação Genética/genética , Inflamação/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Oncorhynchus mykiss/genética , Receptor 2 Toll-Like/genética , Animais , Linhagem Celular , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Interleucina-1beta/genética , Interleucina-8/genética , NF-kappa B/genética , Transdução de Sinais/genética
13.
Genes (Basel) ; 10(9)2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540274

RESUMO

The pikeperch (Sander lucioperca) is a fresh and brackish water Percid fish natively inhabiting the northern hemisphere. This species is emerging as a promising candidate for intensive aquaculture production in Europe. Specific traits like cannibalism, growth rate and meat quality require genomics based understanding, for an optimal husbandry and domestication process. Still, the aquaculture community is lacking an annotated genome sequence to facilitate genome-wide studies on pikeperch. Here, we report the first highly contiguous draft genome assembly of Sander lucioperca. In total, 413 and 66 giga base pairs of DNA sequencing raw data were generated with the Illumina platform and PacBio Sequel System, respectively. The PacBio data were assembled into a final assembly size of ~900 Mb covering 89% of the 1,014 Mb estimated genome size. The draft genome consisted of 1966 contigs ordered into 1,313 scaffolds. The contig and scaffold N50 lengths are 3.0 Mb and 4.9 Mb, respectively. The identified repetitive structures accounted for 39% of the genome. We utilized homologies to other ray-finned fishes, and ab initio gene prediction methods to predict 21,249 protein-coding genes in the Sander lucioperca genome, of which 88% were functionally annotated by either sequence homology or protein domains and signatures search. The assembled genome spans 97.6% and 96.3% of Vertebrate and Actinopterygii single-copy orthologs, respectively. The outstanding mapping rate (99.9%) of genomic PE-reads on the assembly suggests an accurate and nearly complete genome reconstruction. This draft genome sequence is the first genomic resource for this promising aquaculture species. It will provide an impetus for genomic-based breeding studies targeting phenotypic and performance traits of captive pikeperch.


Assuntos
Genoma , Percas/genética , Animais , Proteínas de Peixes/genética , Anotação de Sequência Molecular , Percas/classificação , Filogenia , Sequenciamento Completo do Genoma
14.
Sci Rep ; 9(1): 5429, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931999

RESUMO

The creatine/phosphocreatine system is the principal energy buffer in mammals, but is scarcely documented in fish. We measured the gene expression of major enzymes of this system, glycine amidinotransferase (GATM), guanidinoacetate N-methyltransferase (GAMT) and muscle-type creatine kinase (CKM) in kidney, liver, and muscle tissues of fish and mammals. CKM was expressed strongly in the muscles of all examined species. In contrast, GATM and GAMT were strongly expressed in the muscle tissue of fish, but not of mammals. This indicates that creatine synthesis and usage are spatially separated in mammals, but not in fish, which is supported by RNA-Seq data of 25 species. Differences in amino acid metabolism along with methionine adenosyltransferase gene expression in muscle from fishes but not mammals further support a central metabolic role of muscle in fish, and hence different organization of the creatine/phosphocreatine biosynthesis system in higher and lower vertebrates.


Assuntos
Creatina/biossíntese , Evolução Molecular , Músculo Esquelético/metabolismo , Amidinotransferases/genética , Animais , Creatina Quinase Forma MM/genética , Peixes , Perfilação da Expressão Gênica , Músculo Esquelético/enzimologia , Análise de Sequência de RNA
15.
Artigo em Inglês | MEDLINE | ID: mdl-30703525

RESUMO

Apoptosis is an integral part of homeostasis and supports multiple physiological processes such as development and immune defense, thereby directly targeting damaged or unwanted cells without affecting neighbor cells. In the present study, we characterized the apoptotic key factors caspase-3, -7, and - 8 as well as regulator protein TPT1 (translationally-controlled tumor protein 1) from rainbow trout (Oncorhynchus mykiss). We identified multiple single-nucleotide changes in their coding sequences and showed that the CASP3 gene is present in at least three variants. Caspase genes were clustered to their orthologs in bony fish and human by using evolutionary analysis. Expression profiling in seven tissues of unchallenged adult fish revealed predominant transcript levels in the head kidney (CASP3, 7, and 8) or brain (TPT1). Further, we analyzed the expression of a more comprehensive panel of 16 trout genes encoding pro- and anti-apoptotic factors and associated proteins during development and upon stress exposure (in vitro temperature and staurosporine treatment). Previously published transcriptome data suggested that the induction of apoptotic processes is mirrored on the transcript level, but this could not be confirmed by the present gene-profiling study. Yet on the protein level, treatment of trout cell line RT-gill-W1 with 1 µM staurosporine for up to 120 min led to a significant increase of CASP3/7 activity. Moreover, a meta-analysis on published data showed that stress-related expression could only be detected sporadically for apoptotic key factors. In conclusion, there seems to be no reliable pattern or marker representing the stress-related induction of apoptosis in salmonids.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Oncorhynchus mykiss/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Oncorhynchus mykiss/genética , Homologia de Sequência , Proteína Tumoral 1 Controlada por Tradução
16.
Carbohydr Polym ; 208: 32-41, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658806

RESUMO

Polysialic acid (polySia) is a linear carbohydrate polymer consisting of N-acetylneuraminic acid residues and is involved in several physiological processes. In the present study, we identified the multifunctional protein lactoferrin as a novel interaction partner for polySia. Lactoferrin co-precipitated when polySia was isolated from human blood, milk, and semen samples. The interaction between polySia and lactoferrin was verified using a native gel electrophoresis application, demonstrating that such interaction depends on the degree of polymerization. The interaction between the molecules could be inhibited by an antibody against lactoferricin (LFcin), which suggests that the LFcin domain of lactoferrin represents the potential binding area for sialic acid polymers. Because lactoferrin inhibits the formation of neutrophil extracellular traps (NETs), the potential impact of polySia on this function of lactoferrin was tested. Intriguingly, we observed that polySia increases the efficiency of lactoferrin to prevent the release of NET fibers. PolySia alone shows no activity. Therefore, together with lactoferrin, polySia may represent a natural regulatory system of NET release.

17.
Biology (Basel) ; 9(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905814

RESUMO

The daily change of light and dark periods influences different physiological processes including feeding, resting and locomotor activity. Previously, several studies on mammalian models revealed a strong link between day-night rhythms and key immunological parameters. Since teleost fishes possess innate and adaptive immune responses like those observed in higher vertebrates, we aimed to elucidate how changes in light-dark cycles shape the immune system of fish. Using the rainbow trout laboratory model, we investigated the link between diurnal rhythms and immune competence of fish. Initially, the cell composition and phagocytic activity of leukocytes was analyzed in the circulation as well as in the head kidney, the functional ortholog of mammalian bone marrow. Once the baseline was established, we evaluated the ability of fish to respond to a bacterial stimulus, as well as the changes in antimicrobial activity of the serum. Our results suggest increased immune competence during the day, manifested by the higher presence of myeloid cells in the circulation; increased overall phagocytic activity; and higher capacity of the sera to inhibit the growth of Aeromonas salmonicida. Notably, our flow cytometric analysis identified the myeloid cells as the major population influenced by the time of day, whereas IgM+ B cells and thrombocytes did not vary in a significant manner. Interestingly, the presence of myeloid cells in blood and head kidney followed complementary trends. Thus, while we observed the highest number of myeloid cells in the blood during early morning, we witnessed a reverse trend in the head kidney, suggesting a homing of myeloid cells to reservoir niches with the onset of the dark phase. Further, the presence of myeloid cells was mirrored in the expression of the proinflammatory marker tnfa as well as in the number of leukocytes recruited to the peritoneal cavity in the peritonitis model of inflammation. Overall, the data suggest a connection between diurnal rhythms and the immune response of rainbow trout and highlight the relevance of rhythmicity and its influence on experimental work in the field of fish chronoimmunology.

18.
Front Genet ; 9: 241, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30073015

RESUMO

The complex and still poorly understood nature of thermoregulation in various fish species complicates the determination of the physiological status on the basis of diagnostic marker genes and indicative molecular pathways. The present study aimed to compare the physiological impacts of both gradual and acute temperature rise from 18 to 24°C on maraena whitefish in aquaculture. Microarray-based transcriptome profiles in the liver, spleen and kidney of heat-stressed maraena whitefish revealed the modulation of a significantly higher number of genes in those groups exposed to gradually rising temperatures compared with the acutely stressed groups, which might reflect early adaptation mechanisms. Moreover, we suggest a common set of 11 differentially expressed genes that indicate thermal stress induced by gradual or acute temperature rise in the three selected tissues. Besides the two pathways regulated in both data sets unfolded protein response and aldosterone signaling in epithelial cells, we identified unique tissue- and stress type-specific pathways reflecting the crossroads between signal transduction, metabolic and immunologic pathways to cope with thermal stress. In addition, comparing lists of differentially regulated genes with meta-analyzed published data sets revealed that "acute temperature rise"-responding genes that encode members of the HSP70, HSP90, and HSP40 families; their functional homologs; co-chaperones and stress-signal transducers are well-conserved across different species, tissues and/or cell types and experimental approaches.

19.
J Genet ; 96(4): 701-706, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28947720

RESUMO

A rapid decline in temperature poses a major challenge for poikilothermic fish, as their entire metabolism depends on ambient temperature. The gene expression of rainbow trout Oncorhynchus mykiss having undergone such a cold shock (0◦C) was compared to a control (5◦C) in a microarray and quantitative real-time PCR based study. The tissues of gill, kidney and liver were examined. The most differently expressed genes were found in liver, many of them contributing to the network 'cellular compromise, cellular growth and proliferation'.However, the number of genes found to be regulated at 0◦Cwas surprisingly low. Instead of classical genes involved in temperature shock, the three genes encoding fibroblast growth factor 1 (fgf1), growth arrest and DNA-damageinducible, alpha (gadd45a) and sclerostin domain-containing protein 1 (sostdc1) were upregulated in the liver upon cold shock in two different rainbow trout strains, suggesting that these genes may be considered as general biomarkers for cold shock in rainbow trout.


Assuntos
Resposta ao Choque Frio/genética , Estudos de Associação Genética , Oncorhynchus mykiss/genética , Animais , Temperatura Baixa , Proteínas de Peixes/genética , Reação em Cadeia da Polimerase em Tempo Real
20.
Mar Biotechnol (NY) ; 17(5): 576-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26017776

RESUMO

Seasonal water temperatures can be stressful for fish in aquaculture and can therefore negatively influence their welfare. Although the kidney is the crucial organ associated with the primary stress response, knowledge about the stress-modulated kidney transcriptome in salmonids is limited. In the present study, we used a comparative microarray approach to characterize the general gene expression profiles of rainbow trout trunk kidney after a 2-week acclimation to mild heat (23 °C) and cold stress (8 °C). Hypothesizing that local adaptation influences stress performance, we aimed to identify differences in the temperature-induced gene expression in the regional trout strain BORN, in addition to a common imported strain. Moderate temperature challenge provoked typical stress response clusters, including heat-shock proteins or cold-inducible factors, in addition to altered energy metabolism in trout kidney. Mild cold, in particular, enhanced renal protein degradation processes, as well as mRNA and protein synthesis, while it also triggered fatty acid biosynthesis. Mild heat led to cytoskeleton-stabilizing processes and might have facilitated cell damage and infection. Furthermore, both breeding lines used different strategies for energy provision, cellular defense, and cell death/survival pathways. As a main finding, the genes involved in energy provision showed generally higher transcript levels at both temperatures in BORN trout compared to imported trout, indicating adjusted metabolic rates under local environmental conditions. Altogether, this study provides a general overview of stress-induced transcriptional patterns in rainbow trout trunk kidney, in addition to identifying genes and networks that contribute to the robustness of the BORN strain. Our analyses suggest SERPINH1 and CIRBP as general marker genes for heat stress and cold stress in trout, respectively.


Assuntos
Proteínas de Peixes/metabolismo , Rim/metabolismo , Oncorhynchus mykiss/genética , Transcriptoma/genética , Animais , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...