Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 8(4)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096627

RESUMO

BACKGROUND: folliculogenesis is a strictly regulated process that may be affected by endocrine disrupting chemicals (EDCs) through sometimes not so clear molecular mechanisms. METHODS: we conducted a multicentric observational study involving six fertility centers across Italy, prospectively recruiting 122 women attending a fertility treatment. Recruited women had age ≤42 years, and normal ovarian reserve. Blood and follicular fluid samples were taken for EDCs measurement using liquid chromatography tandem mass spectrometry and each woman completed an epidemiological questionnaire. RESULTS: The main EDCs found were monobutyl phthalate (MBP) (median blood: 8.96 ng/mL, follicular fluid 6.43 ng/mL), monoethylhexyl phthalate (MEHP) (median blood: 9.16 ng/mL, follicular fluid 7.68 ng/mL) and bisphenol A (BPA) (median blood: 1.89 ng/mL, follicular fluid 1.86 ng/mL). We found that serum MBP concentration was significantly associated with the considered area (p < 0.001, adj. mean: 7.61 ng/mL, 14.40 ng/mL, 13.56 ng/mL; Area 1: Milan-Turin, Area 2: Rome-Naples; Area 3: Catania-Bari, respectively) but negatively with home plastic food packaging (p = 0.004). Follicular MBP was associated with irregular cycles (p = 0.019). No association was detected between EDCs and eating habits and other clinical and epidemiological features. CONCLUSIONS: This study represents the first Italian biomonitoring of plastic EDCs in follicular fluid, laying the basis for future prospective evaluation on oocyte quality before assisted reproduction techniques (ART).

2.
Clin Mass Spectrom ; 18: 54-65, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34820526

RESUMO

Phthalates and bisphenol A interfere with the synthesis, secretion, transport, binding, metabolism, and excretion of endogenous hormones and, for this reason, are classified as endocrine disruptors. We are here presenting an analytical method for the simultaneous detection of six phthalates metabolites and bisphenol A in different biological fluids (urine, serum and follifular fluid) by liquid chromatography coupled to tandem mass spectrometry. The quantification was carried out in negative electrospray ionization mode using selected reaction monitoring as acquisition mode. Different extraction protocols, using either solid phase or liquid/liquid extraction, were comparatively evaluated to optimize the sample preparation procedure. Solid-phase extraction was chosen as it ensured the best recovery and overall sensitivity. The method was successfully validated: recovery varying in the range 71 ± 2%-107 ± 6% depending on the target analyte and the matrix considered, intra-assay and inter-assay precision ≤ 12% for follicular fluid, ≤11% for serum and ≤ 10% for urine and accuracy ≤ 115% for follicular fluid, ≤113% for serum ≤ 115% for urine , linearity with R2 > 0.99, with the exception of MEP (recovery 64 ± 8%, intra-assay precision ≤ 20%, inter-assay precision ≤ 16% for follicular fluid). The actual applicability of the method developed and validated in this study was assessed by the analysis of real samples, including 10 specimens of follicular fluid, serum and urine samples, that showed the presence of phthalates metabolites and Bisphenol A, and confirming that the newly developed method can be applied in the routine clinical laboratory for the identification and quantitation of these endocrine-disrupting chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA