Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(9): 107533, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636079

RESUMO

Fetal skin achieves scarless wound repair. Dermal fibroblasts play a central role in extracellular matrix deposition and scarring outcomes. Both fetal and gingival wound repair share minimal scarring outcomes. We tested the hypothesis that compared to adult skin fibroblasts, human fetal skin fibroblast diversity is unique and partly overlaps with gingival skin fibroblasts. Human fetal skin (FS, n = 3), gingiva (HGG, n = 13), and mature skin (MS, n = 13) were compared at single-cell resolution. Dermal fibroblasts, the most abundant cluster, were examined to establish a connectome with other skin cells. Annexin1-FPR1 signaling pathway was dominant in both FS as well as HGG fibroblasts and related myeloid cells while scanty in MS fibroblasts. Myeloid-specific FPR1-ORF delivered in murine wound edge using tissue nanotransfection (TNT) technology significantly enhanced the quality of healing. Pseudotime analyses identified the co-existence of an HGG fibroblast subset with FPR1high myeloid cells of fetal origin indicating common underlying biological processes.

2.
Nat Commun ; 14(1): 1129, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854749

RESUMO

Tissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.


Assuntos
Fibroblastos , Pele , Cicatrização , Animais , Humanos , Camundongos , Antagomirs/farmacologia , Antagomirs/uso terapêutico , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Oligonucleotídeos/farmacologia , Pele/metabolismo , Cicatrização/genética , Cicatrização/fisiologia
3.
Front Endocrinol (Lausanne) ; 13: 989844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568089

RESUMO

Type 2 diabetes mellitus (T2DM) causes peripheral vascular disease because of which several blood-borne factors, including vital nutrients fail to reach the affected tissue. Tissue epigenome is sensitive to chronic hyperglycemia and is known to cause pathogenesis of micro- and macrovascular complications. These vascular complications of T2DM may perpetuate the onset of organ dysfunction. The burden of diabetes is primarily because of a wide range of complications of which nonhealing diabetic ulcers represent a major component. Thus, it is imperative that current research help recognize more effective methods for the diagnosis and management of early vascular injuries. This review addresses the significance of epigenetic processes such as DNA methylation and histone modifications in the evolution of macrovascular and microvascular complications of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Doenças Vasculares , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/complicações , Epigênese Genética , Metilação de DNA , Doenças Vasculares/complicações
4.
J Clin Invest ; 132(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35819852

RESUMO

An extreme chronic wound tissue microenvironment causes epigenetic gene silencing. An unbiased whole-genome methylome was studied in the wound-edge tissue of patients with chronic wounds. A total of 4,689 differentially methylated regions (DMRs) were identified in chronic wound-edge skin compared with unwounded human skin. Hypermethylation was more frequently observed (3,661 DMRs) in the chronic wound-edge tissue compared with hypomethylation (1,028 DMRs). Twenty-six hypermethylated DMRs were involved in epithelial-mesenchymal transition (EMT). Bisulfite sequencing validated hypermethylation of a predicted specific upstream regulator TP53. RNA-Seq analysis was performed to qualify findings from methylome analysis. Analysis of the downregulated genes identified the TP53 signaling pathway as being significantly silenced. Direct comparison of hypermethylation and downregulated genes identified 4 genes, ADAM17, NOTCH, TWIST1, and SMURF1, that functionally represent the EMT pathway. Single-cell RNA-Seq studies revealed that these effects on gene expression were limited to the keratinocyte cell compartment. Experimental murine studies established that tissue ischemia potently induces wound-edge gene methylation and that 5'-azacytidine, inhibitor of methylation, improved wound closure. To specifically address the significance of TP53 methylation, keratinocyte-specific editing of TP53 methylation at the wound edge was achieved by a tissue nanotransfection-based CRISPR/dCas9 approach. This work identified that reversal of methylation-dependent keratinocyte gene silencing represents a productive therapeutic strategy to improve wound closure.


Assuntos
Metilação de DNA , Transição Epitelial-Mesenquimal , Animais , Ilhas de CpG , DNA , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Humanos , Camundongos , Ubiquitina-Proteína Ligases/genética
5.
Apoptosis ; 27(3-4): 261-282, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122181

RESUMO

Piperlongumine (PL, piplartine) is an alkaloid derived from the Piper longum L. (long pepper) roots. Originally discovered in 1961, the biological activities of this molecule against some cancer types was reported during the last decade. Whether PL can synergize with doxorubicin and the underlying mechanism in breast cancer remains elusive. Herein, we report the activities of PL in numerous breast cancer cell lines. PL reduced the migration and colony formation by cancer cells. An enhancement in the sub-G1 population, reduction in the mitochondrial membrane potential, chromatin condensation, DNA laddering and suppression in the cell survival proteins was observed by the alkaloid. Further, PL induced ROS generation in breast cancer cells. While TNF-α induced p65 nuclear translocation, PL suppressed the translocation in cancer cells. The expression of lncRNAs such as MEG3, GAS5 and H19 were also modulated by the alkaloid. The molecular docking studies revealed that PL can interact with both p65 and p50 subunits. PL reduced the glucose import and altered the pH of the medium towards the alkaline side. PL also suppressed the expression of glucose and lactate transporter in breast cancer cells. In tumor bearing mouse model, PL was found to synergize with doxorubicin and reduced the size, volume and weight of the tumor. Overall, the effects of doxorubicin in cancer cells are enhanced by PL. The modulation of glucose import, NF-κB activation and lncRNAs expression may have contributory role for the activities of PL in breast cancer.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias da Mama , Dioxolanos , Piper , RNA Longo não Codificante , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Dioxolanos/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Glucose/farmacologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Piper/química , RNA Longo não Codificante/genética , Espécies Reativas de Oxigênio/metabolismo
6.
Diabetes ; 71(5): 1149-1165, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192691

RESUMO

Therapeutic vascular endothelial growth factor (VEGF) replenishment has met with limited success for the management of critical limb-threatening ischemia. To improve outcomes of VEGF therapy, we applied single-cell RNA sequencing (scRNA-seq) technology to study the endothelial cells of the human diabetic skin. Single-cell suspensions were generated from the human skin followed by cDNA preparation using the Chromium Next GEM Single-cell 3' Kit v3.1. Using appropriate quality control measures, 36,487 cells were chosen for downstream analysis. scRNA-seq studies identified that although VEGF signaling was not significantly altered in diabetic versus nondiabetic skin, phospholipase Cγ2 (PLCγ2) was downregulated. The significance of PLCγ2 in VEGF-mediated increase in endothelial cell metabolism and function was assessed in cultured human microvascular endothelial cells. In these cells, VEGF enhanced mitochondrial function, as indicated by elevation in oxygen consumption rate and extracellular acidification rate. The VEGF-dependent increase in cell metabolism was blunted in response to PLCγ2 inhibition. Follow-up rescue studies therefore focused on understanding the significance of VEGF therapy in presence or absence of endothelial PLCγ2 in type 1 (streptozotocin-injected) and type 2 (db/db) diabetic ischemic tissue. Nonviral topical tissue nanotransfection technology (TNT) delivery of CDH5 promoter-driven PLCγ2 open reading frame promoted the rescue of hindlimb ischemia in diabetic mice. Improvement of blood flow was also associated with higher abundance of VWF+/CD31+ and VWF+/SMA+ immunohistochemical staining. TNT-based gene delivery was not associated with tissue edema, a commonly noted complication associated with proangiogenic gene therapies. Taken together, our study demonstrates that TNT-mediated delivery of endothelial PLCγ2, as part of combination gene therapy, is effective in diabetic ischemic limb rescue.


Assuntos
Diabetes Mellitus Experimental , Fator A de Crescimento do Endotélio Vascular , Animais , Diabetes Mellitus Experimental/genética , Células Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Isquemia/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Neovascularização Fisiológica/genética , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosfolipase C gama/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/farmacologia , Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Fator de von Willebrand/metabolismo , Fator de von Willebrand/farmacologia , Fator de von Willebrand/uso terapêutico
7.
Sci Rep ; 9(1): 17980, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784542

RESUMO

The sesquiterpene lactones, Isodeoxyelephantopin (IDET) and Deoxyelephantopin (DET) are known to exhibit activities against some cancer types. The activities of these lactones against breast cancer and the molecular bases is not known. We examined the efficacy of lactones in breast cancer preclinical model. Although both lactones exhibited drug like properties, IDET was relatively effective in comparison to DET. IDET suppressed the proliferation of both invasive and non-invasive breast cancer cell lines. IDET also suppressed the colony formation and migration of breast cancer cells. The assays for Acridine Orange (AO)/Propidium Iodide (PI) staining, cell cycle distribution, phosphatidylserine externalization and DNA laddering suggested the apoptosis inducing potential of IDET. The treatment with IDET also induced an accumulation of cells in the sub-G1 and G2/M phases. The exposure of breast cancer cells to the lactone was associated with a depolarization in mitochondrial membrane potential, and cleavage of caspase and PARP. The lactone induced reactive oxygen species (ROS) generation in breast cancer cells. Further, the use of N-acetyl cysteine (NAC) suppressed IDET induced ROS generation and apoptosis. The NF-κB-p65 nuclear translocation induced by okadaic acid (OA) was suppressed by the sesquiterpene. IDET also suppressed the expression of NF-κB regulated tumorigenic proteins, and induced the expression of proapoptotic gene (Bax) in cancer cells. While the expression of oncogenic lncRNAs was suppressed, the tumor suppressor lncRNAs were induced by the sesquiterpene. Collectively, the modulation of multiple cell signaling molecules by IDET may contribute to its activities in breast cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Asteraceae/química , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactonas/química , Lactonas/uso terapêutico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/química , Sesquiterpenos/uso terapêutico , Transdução de Sinais/genética , Estereoisomerismo , Fator de Transcrição RelA/metabolismo
8.
Cell Mol Life Sci ; 76(10): 1947-1966, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30879091

RESUMO

The long non-coding RNAs (lncRNAs) are the crucial regulators of human chronic diseases. Therefore, approaches such as antisense oligonucleotides, RNAi technology, and small molecule inhibitors have been used for the therapeutic targeting of lncRNAs. During the last decade, phytochemicals and nutraceuticals have been explored for their potential against lncRNAs. The common lncRNAs known to be modulated by phytochemicals include ROR, PVT1, HOTAIR, MALAT1, H19, MEG3, PCAT29, PANDAR, NEAT1, and GAS5. The phytochemicals such as curcumin, resveratrol, sulforaphane, berberine, EGCG, and gambogic acid have been examined against lncRNAs. In some cases, formulation of phytochemicals has also been used. The disease models where phytochemicals have been demonstrated to modulate lncRNAs expression include cancer, rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty liver disease. The regulation of lncRNAs by phytochemicals can affect multi-steps of tumor development. When administered in combination with the conventional drugs, phytochemicals can also produce synergistic effects on lncRNAs leading to the sensitization of cancer cells. Phytochemicals target lncRNAs either directly or indirectly by affecting a wide variety of upstream molecules. However, the potential of phytochemicals against lncRNAs has been demonstrated mostly by preclinical studies in cancer models. How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , RNA Longo não Codificante/genética , Antineoplásicos Fitogênicos/uso terapêutico , Doença Crônica/tratamento farmacológico , Humanos , Neoplasias/genética , Resveratrol/uso terapêutico
9.
Biochim Biophys Acta Gen Subj ; 1862(12): 2738-2749, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251663

RESUMO

Breast cancer remains one of the leading causes of cancer related deaths in women worldwide. Bharangin is a diterpenoid quinonemethide that has demonstrated therapeutic potential against leukemia, lymphoma, and multiple myeloma cells. Whether this diterpenoid exhibit activities against breast cancer cells and the underlying mechanism is largely unknown. Herein, we provide evidence that bharangin suppresses the proliferation of MCF-7, MDA-MB-231, MDA-MB-453, MDA-MB-468 and T-47D breast cancer cells. As examined by AO/PI staining, DAPI staining, sub-G1 analysis, phosphatidylserine externalization, caspase activation, DNA laddering, and poly-ADP ribose polymerase cleavage, the diterpenoid induced apoptosis in breast cancer cells. The growth inhibitory effect of bharangin on breast cancer cells was further confirmed from colony-formation assay. Furthermore, the cancer cell migration was also suppressed by the diterpenoid. Mechanistically, bharangin was found to modulate multiple cancer related cell signalling pathways in breast cancer cells. Bharangin suppressed the expression of cell survival and invasive proteins, and induced Bax and mitochondrial depolarization in breast cancer cells. The diterpenoid also suppressed the activation of pro-inflammatory transcription factor, nuclear factor (NF)-κB induced by okadaic acid. Finally, the diterpenoid induced the expression of tumor suppressor lncRNAs (MEG-3, GAS-5), while down-regulating oncogenic H19 expression. Overall, these results suggest that bharangin exhibits anti-carcinogenic, anti-proliferative and anti-inflammatory activities against breast cancer cells. The modulation of lncRNA expression and inhibition of NF-κB activation by bharangin may contribute to its anti-carcinogenic activities.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/patologia , Flavonoides/farmacologia , NF-kappa B/fisiologia , RNA Longo não Codificante/fisiologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Semin Cancer Biol ; 52(Pt 2): 53-65, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29196189

RESUMO

Neuroblastoma is the most common pediatric solid tumor of neural crest origin. The current treatment options for neuroblastoma produce severe side effects. Programmed death-ligand 1 (PD-L1), chronic inflammation, and non-coding RNAs are known to play a significant role in the pathogenesis of neuroblastoma. Cancer cells and the surrounding cells in the tumor microenvironment express PD-L1. Programmed death-1 (PD-1) is a co-receptor expressed predominantly by T cells. The binding of PD-1 to its ligands, PD-L1 or PD-L2, is vital for the physiologic regulation of the immune system. Chronic inflammation is involved in the recruitment of leukocytes, production of cytokines and chemokines that in turn, lead to survival, metastasis, and angiogenesis in neuroblastoma tumors. The miRNAs and long non-coding (lnc) RNAs have emerged as a novel class of non-coding RNAs that can regulate neuroblastoma associated cell-signaling pathways. The dysregulation of PD-1/PD-L1, inflammatory pathways, lncRNAs, and miRNAs have been reported in clinical and experimental samples of neuroblastoma. These signaling molecules are currently being evaluated for their potential as the biomarker and therapeutic targets in the management of neuroblastoma. A monoclonal antibody called dinutuximab (Unituxin) that attaches to a carbohydrate molecule GD2, on the surface of many neuroblastoma cells, is being used as an immunotherapy drug for neuroblastoma treatment. Atezolizumab (Tecentriq), an engineered monoclonal antibody against PD-L1, are currently in clinical trial for neuroblastoma patients. The lncRNA/miRNA-based therapeutics is being developed to deliver tumor suppressor lncRNAs/miRNAs or silencing of oncogenic lncRNAs/miRNAs. The focus of this review is to discuss the current knowledge on the immune checkpoint molecules, PD-1/PD-L1 signaling, inflammation, and non-coding RNAs in neuroblastoma.


Assuntos
Antígeno B7-H1/genética , Inflamação/genética , Inflamação/imunologia , Neuroblastoma/genética , Neuroblastoma/imunologia , RNA não Traduzido/genética , Animais , Humanos , Oncologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...