Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
PLoS Pathog ; 18(4): e1010458, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395062

RESUMO

Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.


Assuntos
Peptídeos Antimicrobianos , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Streptococcus pneumoniae , Peptídeos Antimicrobianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
2.
PLOS Digit Health ; 1(10): e0000122, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36812631

RESUMO

Detection and identification of pathogenic bacteria isolated from biological samples (blood, urine, sputum, etc.) are crucial steps in accelerated clinical diagnosis. However, accurate and rapid identification remain difficult to achieve due to the challenge of having to analyse complex and large samples. Current solutions (mass spectrometry, automated biochemical testing, etc.) propose a trade-off between time and accuracy, achieving satisfactory results at the expense of time-consuming processes, which can also be intrusive, destructive and costly. Moreover, those techniques tend to require an overnight subculture on solid agar medium delaying bacteria identification by 12-48 hours, thus preventing rapid prescription of appropriate treatment as it hinders antibiotic susceptibility testing. In this study, lens-free imaging is presented as a possible solution to achieve a quick and accurate wide range, non-destructive, label-free pathogenic bacteria detection and identification in real-time using micro colonies (10-500 µm) kinetic growth pattern combined with a two-stage deep learning architecture. Bacterial colonies growth time-lapses were acquired thanks to a live-cell lens-free imaging system and a thin-layer agar media made of 20 µl BHI (Brain Heart Infusion) to train our deep learning networks. Our architecture proposal achieved interesting results on a dataset constituted of seven different pathogenic bacteria-Staphylococcus aureus (S. aureus), Enterococcus faecium (E. faecium), Enterococcus faecalis (E. faecalis), Staphylococcus epidermidis (S. epidermidis), Streptococcus pneumoniae R6 (S. pneumoniae), Streptococcus pyogenes (S. pyogenes), Lactococcus Lactis (L. Lactis). At T = 8h, our detection network reached an average 96.0% detection rate while our classification network precision and sensitivity averaged around 93.1% and 94.0% respectively, both were tested on 1908 colonies. Our classification network even obtained a perfect score for E. faecalis (60 colonies) and very high score for S. epidermidis at 99.7% (647 colonies). Our method achieved those results thanks to a novel technique coupling convolutional and recurrent neural networks together to extract spatio-temporal patterns from unreconstructed lens-free microscopy time-lapses.

3.
Nucleic Acids Res ; 49(20): 11476-11490, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718721

RESUMO

Pseudomonas aeruginosa possesses one of the most complex bacterial regulatory networks, which largely contributes to its success as a pathogen. However, most of its transcription factors (TFs) are still uncharacterized and the potential intra-species variability in regulatory networks has been mostly ignored so far. Here, we used DAP-seq to map the genome-wide binding sites of all 55 DNA-binding two-component systems (TCSs) response regulators (RRs) across the three major P. aeruginosa lineages. The resulting networks encompass about 40% of all genes in each strain and contain numerous new regulatory interactions across most major physiological processes. Strikingly, about half of the detected targets are specific to only one or two strains, revealing a previously unknown large functional diversity of TFs within a single species. Three main mechanisms were found to drive this diversity, including differences in accessory genome content, as exemplified by the strain-specific plasmid in IHMA87 outlier strain which harbors numerous binding sites of conserved chromosomally-encoded RRs. Additionally, most RRs display potential auto-regulation or RR-RR cross-regulation, bringing to light the vast complexity of this network. Overall, we provide the first complete delineation of the TCSs regulatory network in P. aeruginosa that will represent an important resource for future studies on this pathogen.


Assuntos
Proteínas de Bactérias/genética , Redes Reguladoras de Genes , Pseudomonas aeruginosa/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/metabolismo
4.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575393

RESUMO

Synergism between enzymes is of crucial importance in cell metabolism. This synergism occurs often through a spatial organisation favouring proximity and substrate channelling. In this context, we developed a strategy for evaluating the impact of the geometry between two enzymes involved in nature in the recycling of the carbon derived from plant cell wall polymers. By using an innovative covalent association process using two protein fragments, Jo and In, we produced two bi-modular chimeric complexes connecting a xylanase and a xylosidase, involved in the deconstruction of xylose-based plant cell wall polymer. We first show that the intrinsic activity of the individual enzymes was preserved. Small Angle X-rays Scattering (SAXS) analysis of the complexes highlighted two different spatial organisations in solution, affecting both the distance between the enzymes (53 Å and 28 Å) and the distance between the catalytic pockets (94 Å and 75 Å). Reducing sugar and HPAEC-PAD analysis revealed different behaviour regarding the hydrolysis of Beechwood xylan. After 24 h of hydrolysis, one complex was able to release a higher amount of reducing sugar compare to the free enzymes (i.e., 15,640 and 14,549 µM of equivalent xylose, respectively). However, more interestingly, the two complexes were able to release variable percentages of xylooligosaccharides compared to the free enzymes. The structure of the complexes revealed some putative steric hindrance, which impacted both enzymatic efficiency and the product profile. This report shows that controlling the spatial geometry between two enzymes would help to better investigate synergism effect within complex multi-enzymatic machinery and control the final product.


Assuntos
Glicosídeo Hidrolases/química , Plantas/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Xilose/química , Biomassa , Ciclo do Carbono , Glicosídeo Hidrolases/metabolismo , Hidrólise , Oligossacarídeos/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Engenharia de Proteínas , Espalhamento a Baixo Ângulo , Difração de Raios X , Xilosidases/química , Xilosidases/metabolismo
5.
mBio ; 11(2)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234814

RESUMO

The capsule is the dominant Streptococcus pneumoniae virulence factor, yet how variation in capsule thickness is regulated is poorly understood. Here, we describe an unexpected relationship between mutation of adcAII, which encodes a zinc uptake lipoprotein, and capsule thickness. Partial deletion of adcAII in three of five capsular serotypes frequently resulted in a mucoid phenotype that biochemical analysis and electron microscopy of the D39 adcAII mutants confirmed was caused by markedly increased capsule thickness. Compared to D39, the hyperencapsulated ΔadcAII mutant strain was more resistant to complement-mediated neutrophil killing and was hypervirulent in mouse models of invasive infection. Transcriptome analysis of D39 and the ΔadcAII mutant identified major differences in transcription of the Sp_0505-0508 locus, which encodes an SpnD39III (ST5556II) type I restriction-modification system and allelic variation of which correlates with capsule thickness. A PCR assay demonstrated close linkage of the SpnD39IIIC and F alleles with the hyperencapsulated ΔadcAII strains. However, transformation of ΔadcAII with fixed SpnD39III alleles associated with normal capsule thickness did not revert the hyperencapsulated phenotype. Half of hyperencapsulated ΔadcAII strains contained the same single nucleotide polymorphism in the capsule locus gene cps2E, which is required for the initiation of capsule synthesis. These results provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identified an unexpected linkage between capsule thickness and mutation of ΔadcAII Further investigation will be needed to characterize how mutation of adcAII affects SpnD39III (ST5556II) allele dominance and results in the hyperencapsulated phenotype.IMPORTANCE The Streptococcus pneumoniae capsule affects multiple interactions with the host including contributing to colonization and immune evasion. During infection, the capsule thickness varies, but the mechanisms regulating this are poorly understood. We have identified an unsuspected relationship between mutation of adcAII, a gene that encodes a zinc uptake lipoprotein, and capsule thickness. Mutation of adcAII resulted in a striking hyperencapsulated phenotype, increased resistance to complement-mediated neutrophil killing, and increased S. pneumoniae virulence in mouse models of infection. Transcriptome and PCR analysis linked the hyperencapsulated phenotype of the ΔadcAII strain to specific alleles of the SpnD39III (ST5556II) type I restriction-modification system, a system which has previously been shown to affect capsule thickness. Our data provide further evidence for the importance of the SpnD39III (ST5556II) type I restriction-modification system for modulating capsule thickness and identify an unexpected link between capsule thickness and ΔadcAII, further investigation of which could further characterize mechanisms of capsule regulation.


Assuntos
Alelos , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Enzimas de Restrição-Modificação do DNA/genética , Deleção de Genes , Lipoproteínas/genética , Streptococcus pneumoniae/fisiologia , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Sistema Complemento/imunologia , Enzimas de Restrição-Modificação do DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica/métodos , Lipoproteínas/metabolismo , Mutação , Fagocitose , Transcriptoma , Virulência
6.
ACS Chem Biol ; 13(8): 2010-2015, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30010316

RESUMO

A method for labeling teichoic acids in the human pathogen Streptococcus pneumoniae has been developed using a one-pot two-step metabolic labeling approach. The essential nutriment choline modified with an azido-group was incorporated and exposed at the cell surface more rapidly than it reacted with the strain promoted azide alkyne cycloaddition (SPAAC) partner also present in the medium. Once at the cell surface on teichoic acids, coupling of the azido group could then occur within 5 min by the bio-orthogonal click reaction with a DIBO-linked fluorophore. This fast and easy method allowed pulse-chase experiments and was combined with another fluorescent labeling approach to compare the insertion of teichoic acids with peptidoglycan synthesis with unprecedented temporal resolution. It has revealed that teichoic acid and peptidoglycan processes are largely concomitant, but teichoic acid insertion persists later at the division site.


Assuntos
Parede Celular/química , Corantes Fluorescentes/química , Sondas Moleculares/química , Peptidoglicano/química , Ácidos Teicoicos/química , Alcinos/química , Alcinos/metabolismo , Azidas/química , Azidas/metabolismo , Colina/análogos & derivados , Colina/química , Colina/metabolismo , Química Click , Reação de Cicloadição , Ciclo-Octanos/química , Sondas Moleculares/metabolismo , Peptidoglicano/biossíntese , Streptococcus pneumoniae/química , Ácidos Teicoicos/biossíntese
7.
Sci Rep ; 8(1): 7591, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29765094

RESUMO

Bacterial division is intimately linked to synthesis and remodeling of the peptidoglycan, a cage-like polymer that surrounds the bacterial cell, providing shape and mechanical resistance. The bacterial division machinery, which is scaffolded by the cytoskeleton protein FtsZ, includes proteins with enzymatic, structural or regulatory functions. These proteins establish a complex network of transient functional and/or physical interactions which preserve cell shape and cell integrity. Cell wall hydrolases required for peptidoglycan remodeling are major contributors to this mechanism. Consistent with this, their deletion or depletion often results in morphological and/or division defects. However, the exact function of most of them remains elusive. In this work, we show that the putative lysozyme activity of the cell wall hydrolase Pmp23 is important for proper morphology and cell division in the opportunistic human pathogen Streptococcus pneumoniae. Our data indicate that active Pmp23 is required for proper localization of the Z-ring and the FtsZ-positioning protein MapZ. In addition, Pmp23 localizes to the division site and interacts directly with the essential peptidoglycan synthase PBP2x. Altogether, our data reveal a new regulatory function for peptidoglycan hydrolases.


Assuntos
Parede Celular/enzimologia , Muramidase/genética , Muramidase/metabolismo , Streptococcus pneumoniae/fisiologia , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Deleção de Genes , Microscopia de Fluorescência , Modelos Moleculares , Muramidase/química , Estrutura Secundária de Proteína , Transporte Proteico , Homologia de Sequência do Ácido Nucleico , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética
8.
Sci Rep ; 8(1): 2309, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396536

RESUMO

During the evolution of cellular bioenergetics, many protein families have been fashioned to match the availability and replenishment in energy supply. Molecular motors and primary transporters essentially need ATP to function while proteins involved in cell signaling or translation consume GTP. ATP-Binding Cassette (ABC) transporters are one of the largest families of membrane proteins gathering several medically relevant members that are typically powered by ATP hydrolysis. Here, a Streptococcus pneumoniae ABC transporter responsible for fluoroquinolones resistance in clinical settings, PatA/PatB, is shown to challenge this concept. It clearly favors GTP as the energy supply to expel drugs. This preference is correlated to its ability to hydrolyze GTP more efficiently than ATP, as found with PatA/PatB reconstituted in proteoliposomes or nanodiscs. Importantly, the ATP and GTP concentrations are similar in S. pneumoniae supporting the physiological relevance of GTP as the energy source of this bacterial transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Guanosina Trifosfato/metabolismo , Streptococcus pneumoniae/enzimologia , Farmacorresistência Bacteriana , Fluoroquinolonas/metabolismo , Hidrólise , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo , Especificidade por Substrato
9.
Mol Microbiol ; 106(5): 832-846, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28960579

RESUMO

The peptidoglycan is a rigid matrix required to resist turgor pressure and to maintain the cellular shape. It is formed by linear glycan chains composed of N-acetylmuramic acid-(ß-1,4)-N-acetylglucosamine (MurNAc-GlcNAc) disaccharides associated through cross-linked peptide stems. The peptidoglycan is continually remodelled by synthetic and hydrolytic enzymes and by chemical modifications, including O-acetylation of MurNAc residues that occurs in most Gram-positive and Gram-negative bacteria. This modification is a powerful strategy developed by pathogens to resist to lysozyme degradation and thus to escape from the host innate immune system but little is known about its physiological function. In this study, we have investigated to what extend peptidoglycan O-acetylation is involved in cell wall biosynthesis and cell division of Streptococcus pneumoniae. We show that O-acetylation driven by Adr protects the peptidoglycan of dividing cells from cleavage by the major autolysin LytA and occurs at the septal site. Our results support a function for Adr in the formation of robust and mature MurNAc O-acetylated peptidoglycan and infer its role in the division of the pneumococcus.


Assuntos
Parede Celular/metabolismo , Peptidoglicano/metabolismo , Streptococcus pneumoniae/metabolismo , Acetilação , Acetilglucosamina/metabolismo , Divisão Celular , Bactérias Gram-Negativas/metabolismo , Ácidos Murâmicos/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo
10.
J Biol Chem ; 292(6): 2217-2225, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28011643

RESUMO

Bacterial pathogens recruit circulating proteins to their own surfaces, co-opting the host protein functions as a mechanism of virulence. Particular attention has focused on the binding of plasminogen (Plg) to bacterial surfaces, as it has been shown that this interaction contributes to bacterial adhesion to host cells, invasion of host tissues, and evasion of the immune system. Several bacterial proteins are known to serve as receptors for Plg including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytoplasmic enzyme that appears on the cell surface in this moonlighting role. Although Plg typically binds to these receptors via several lysine-binding domains, the specific interactions that occur have not been documented in all cases. However, identification of the relevant residues could help define strategies for mitigating the virulence of important human pathogens, such as Streptococcus pneumoniae (Sp). To shed light on this question, we have described a combination of peptide-spot array screening, competition and SPR assays, high-resolution crystallography, and mutational analyses to characterize the interaction between SpGAPDH and Plg. We identified three SpGAPDH lysine residues that were instrumental in defining the kinetic and thermodynamic parameters of the interaction. Altogether, the integration of the data presented in this work allows us to propose a structural model for the molecular interaction of the SpGAPDH-Plg complex.


Assuntos
Plasminogênio/metabolismo , Streptococcus pneumoniae/patogenicidade , Sequência de Aminoácidos , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Cinética , Ligação Proteica , Conformação Proteica , Ressonância de Plasmônio de Superfície , Termodinâmica
11.
BMC Microbiol ; 16(1): 239, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27729019

RESUMO

BACKGROUND: Proteins from the LytR-CpsA-Psr family are found in almost all Gram-positive bacteria. Although LCP proteins have been studied in other pathogens, their functions in enterococci remain uncharacterized. The Psr protein from Enterococcus hirae, here renamed LcpA, previously associated with the regulation of the expression of the low-affinity PBP5 and ß-lactam resistance, has been characterized. RESULTS: LcpA protein of E. hirae ATCC 9790 has been produced and purified with and without its transmembrane helix. LcpA appears, through different methods, to be localized in the membrane, in agreement with in silico predictions. The interaction of LcpA with E. hirae cell wall indicates that LcpA binds enterococcal peptidoglycan, regardless of the presence of secondary cell wall polymers. Immunolocalization experiments showed that LcpA and PBP5 are localized at the division site of E. hirae. CONCLUSIONS: LcpA belongs to the LytR-CpsA-Psr family. Its topology, localization and binding to peptidoglycan support, together with previous observations on defective mutants, that LcpA plays a role related to the cell wall metabolism, probably acting as a phosphotransferase catalyzing the attachment of cell wall polymers to the peptidoglycan.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Streptococcus faecium ATCC 9790/metabolismo , Peptidoglicano/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Membrana Celular/metabolismo , Parede Celular/metabolismo , Clonagem Molecular , DNA Bacteriano , Streptococcus faecium ATCC 9790/citologia , Streptococcus faecium ATCC 9790/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Fosfotransferases/metabolismo , Mapas de Interação de Proteínas , Proteínas Recombinantes , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/isolamento & purificação , Resistência beta-Lactâmica
12.
Amino Acids ; 48(9): 2205-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27209197

RESUMO

Snake venom metalloproteinases (SVMPs) participate in snakebite pathology such as hemorrhage, inflammation, and necrosis. They are synthesized as latent multi-domain precursors whose processing generates either catalytically active enzymes or free non-enzymatic domains. Recombinant expression of the precursor of P-III class SVMPs has failed due to the instability of the multi-domain polypeptide structure. Conversely, functional recombinant non-catalytic domains were obtained by prokaryotic expression systems. Here, we show for the first time the recombinant expression of the precursor of HF3, a highly hemorrhagic SVMP from Bothrops jararaca, and its non-catalytic domains, using an E. coli-based cell-free synthesis system. The precursor of HF3, composed of pro-, metalloproteinase-, disintegrin-like-, and cysteine-rich domains, and containing 38 Cys residues, was successfully expressed and purified. A protein composed of the disintegrin-like and cysteine-rich domains (DC protein) and the cysteine-rich domain alone (C protein) were expressed in vitro individually and purified. Both proteins were shown to be functional in assays monitoring the interaction with matrix proteins and in modulating the cleavage of fibrinogen by HF3. These data indicate that recombinant expression using prokaryotic-based cell-free synthesis emerges as an attractive alternative for the study of the structure and function of multi-domain proteins with a high content of Cys residues.


Assuntos
Bothrops , Venenos de Crotalídeos/biossíntese , Venenos de Crotalídeos/química , Expressão Gênica , Metaloproteases/biossíntese , Metaloproteases/química , Animais , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Venenos de Crotalídeos/genética , Metaloproteases/genética , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
13.
PLoS One ; 10(12): e0143374, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26629896

RESUMO

Understanding the relationship between protein sequence and molecular recognition selectivity remains a major challenge. The antibody fragment scFv1F4 recognizes with sub nM affinity a decapeptide (sequence 6TAMFQDPQER15) derived from the N-terminal end of human papilloma virus E6 oncoprotein. Using this decapeptide as antigen, we had previously shown that only the wild type amino-acid or conservative replacements were allowed at positions 9 to 12 and 15 of the peptide, indicating a strong binding selectivity. Nevertheless phenylalanine (F) was equally well tolerated as the wild type glutamine (Q) at position 13, while all other amino acids led to weaker scFv binding. The interfaces of complexes involving either Q or F are expected to diverge, due to the different physico-chemistry of these residues. This would imply that high-affinity binding can be achieved through distinct interfacial geometries. In order to investigate this point, we disrupted the scFv-peptide interface by modifying one or several peptide positions. We then analyzed the effect on binding of amino acid changes at the remaining positions, an altered susceptibility being indicative of an altered role in complex formation. The 23 starting variants analyzed contained replacements whose effects on scFv1F4 binding ranged from minor to drastic. A permutation analysis (effect of replacing each peptide position by all other amino acids except cysteine) was carried out on the 23 variants using the PEPperCHIP® Platform technology. A comparison of their permutation patterns with that of the wild type peptide indicated that starting replacements at position 11, 12 or 13 modified the tolerance to amino-acid changes at the other two positions. The interdependence between the three positions was confirmed by SPR (Biacore® technology). Our data demonstrate that binding selectivity does not preclude the existence of alternative high-affinity recognition modes.


Assuntos
Especificidade de Anticorpos , Fragmentos de Peptídeos/imunologia , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Dados de Sequência Molecular , Mutação , Proteínas Oncogênicas Virais/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Proteínas Repressoras/química
14.
mBio ; 6(4)2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26286692

RESUMO

UNLABELLED: Ovococci form a morphological group that includes several human pathogens (enterococci and streptococci). Their shape results from two modes of cell wall insertion, one allowing division and one allowing elongation. Both cell wall synthesis modes rely on a single cytoskeletal protein, FtsZ. Despite the central role of FtsZ in ovococci, a detailed view of the in vivo nanostructure of ovococcal Z-rings has been lacking thus far, limiting our understanding of their assembly and architecture. We have developed the use of photoactivated localization microscopy (PALM) in the ovococcus human pathogen Streptococcus pneumoniae by engineering spDendra2, a photoconvertible fluorescent protein optimized for this bacterium. Labeling of endogenously expressed FtsZ with spDendra2 revealed the remodeling of the Z-ring's morphology during the division cycle at the nanoscale level. We show that changes in the ring's axial thickness and in the clustering propensity of FtsZ correlate with the advancement of the cell cycle. In addition, we observe double-ring substructures suggestive of short-lived intermediates that may form upon initiation of septal cell wall synthesis. These data are integrated into a model describing the architecture and the remodeling of the Z-ring during the cell cycle of ovococci. IMPORTANCE: The Gram-positive human pathogen S. pneumoniae is responsible for 1.6 million deaths per year worldwide and is increasingly resistant to various antibiotics. FtsZ is a cytoskeletal protein polymerizing at midcell into a ring-like structure called the Z-ring. FtsZ is a promising new antimicrobial target, as its inhibition leads to cell death. A precise view of the Z-ring architecture in vivo is essential to understand the mode of action of inhibitory drugs (see T. den Blaauwen, J. M. Andreu, and O. Monasterio, Bioorg Chem 55:27-38, 2014, doi:10.1016/j.bioorg.2014.03.007, for a review on FtsZ inhibitors). This is notably true in ovococcoid bacteria like S. pneumoniae, in which FtsZ is the only known cytoskeletal protein. We have used superresolution microscopy to obtain molecular details of the pneumococcus Z-ring that have so far been inaccessible with conventional microscopy. This study provides a nanoscale description of the Z-ring architecture and remodeling during the division of ovococci.


Assuntos
Proteínas de Bactérias/ultraestrutura , Proteínas do Citoesqueleto/ultraestrutura , Nanoestruturas/ultraestrutura , Streptococcus pneumoniae/química , Streptococcus pneumoniae/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ciclo Celular , Divisão Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Corantes Fluorescentes , Microscopia de Fluorescência/métodos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/ultraestrutura
15.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1373-81, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057677

RESUMO

LytA is responsible for the autolysis of many Streptococcus species, including pathogens such as S. pneumoniae, S. pseudopneumoniae and S. mitis. However, how this major autolysin achieves full activity remains unknown. Here, the full-length structure of the S. pneumoniae LytA dimer is reported at 2.1 Å resolution. Each subunit has an N-terminal amidase domain and a C-terminal choline-binding domain consisting of six choline-binding repeats, which form five canonical and one single-layered choline-binding sites. Site-directed mutageneses combined with enzymatic activity assays indicate that dimerization and binding to choline are two independent requirements for the autolytic activity of LytA in vivo. Altogether, it is suggested that dimerization and full occupancy of all choline-binding sites through binding to choline-containing TA chains enable LytA to adopt a fully active conformation which allows the amidase domain to cleave two lactyl-amide bonds located about 103 Å apart on the peptidoglycan.


Assuntos
Proteínas de Bactérias/química , N-Acetil-Muramil-L-Alanina Amidase/química , Streptococcus/química , Conformação Proteica
16.
J Mol Recognit ; 28(10): 635-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25960426

RESUMO

Antibody selectivity represents a major issue in the development of efficient immuno-therapeutics and detection assays. Its description requires a comparison of the affinities of the antibody for a significant number of antigen variants. In the case of peptide antigens, this task can now be addressed to a significant level of details owing to improvements in spot peptide array technologies. They allow the high-throughput mutational analysis of peptides with, depending on assay design, an evaluation of binding stabilities. Here, we examine the cross-reactive capacity of an antibody fragment using the PEPperCHIP(®) technology platform (PEPperPRINT GmbH, Heidelberg, Germany; >8800 peptides per microarray) combined with the surface plasmon resonance characterization (Biacore(®) technology; GE-Healthcare Biacore, Uppsala, Sweden) of a subset of interactions. ScFv1F4 recognizes the N-terminal end of oncoprotein E6 of human papilloma virus 16. The spot permutation analysis (i.e. each position substituted by all amino acids except cysteine) of the wild type decapeptide (sequence (6)TAMFQDPQER(15)) and of 15 variants thereof defined the optimal epitope and provided a ranking for variant recognition. The SPR affinity measurements mostly validated the ranking of complex stabilities deduced from array data and defined the sensitivity of spot fluorescence intensities, bringing further insight into the conditions for cross-reactivity. Our data demonstrate the importance of throughput and quantification in the assessment of antibody selectivity.


Assuntos
Anticorpos Monoclonais/química , Especificidade de Anticorpos , Peptídeos/química , Anticorpos Monoclonais/imunologia , Reações Cruzadas/imunologia , Epitopos/química , Humanos , Análise em Microsséries/métodos , Peptídeos/imunologia , Ressonância de Plasmônio de Superfície/métodos
17.
PLoS One ; 10(4): e0125377, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25927608

RESUMO

Release of conserved cytoplasmic proteins is widely spread among Gram-positive and Gram-negative bacteria. Because these proteins display additional functions when located at the bacterial surface, they have been qualified as moonlighting proteins. The GAPDH is a glycolytic enzyme which plays an important role in the virulence processes of pathogenic microorganisms like bacterial invasion and host immune system modulation. However, GAPDH, like other moonlighting proteins, cannot be secreted through active secretion systems since they do not contain an N-terminal predicted signal peptide. In this work, we investigated the mechanism of GAPDH export and surface retention in Streptococcus pneumoniae, a major human pathogen. We addressed the role of the major autolysin LytA in the delivery process of GAPDH to the cell surface. Pneumococcal lysis is abolished in the ΔlytA mutant strain or when 1% choline chloride is added in the culture media. We showed that these conditions induce a marked reduction in the amount of surface-associated GAPDH. These data suggest that the presence of GAPDH at the surface of pneumococcal cells depends on the LytA-mediated lysis of a fraction of the cell population. Moreover, we demonstrated that pneumococcal GAPDH binds to the bacterial cell wall independently of the presence of the teichoic acids component, supporting peptidoglycan as a ligand to surface GAPDH. Finally, we showed that peptidoglycan-associated GAPDH recruits C1q from human serum but does not activate the complement pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Peptidoglicano/metabolismo , Infecções Pneumocócicas/metabolismo , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/genética , Bacteriólise/genética , Membrana Celular/metabolismo , Parede Celular/metabolismo , Complemento C1q/imunologia , Complemento C1q/metabolismo , Humanos , Infecções Pneumocócicas/imunologia , Ligação Proteica/imunologia , Transporte Proteico , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/imunologia
18.
Antimicrob Agents Chemother ; 59(1): 609-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385114

RESUMO

The human pathogen Streptococcus pneumoniae has been treated for decades with ß-lactam antibiotics. Its resistance is now widespread, mediated by the expression of mosaic variants of the target enzymes, the penicillin-binding proteins (PBPs). Understanding the mode of action of ß-lactams, not only in molecular detail but also in their physiological consequences, will be crucial to improving these drugs and any counterresistances. In this work, we investigate the piperacillin paradox, by which this ß-lactam selects primarily variants of PBP2b, whereas its most reactive target is PBP2x. These PBPs are both essential monofunctional transpeptidases involved in peptidoglycan assembly. PBP2x participates in septal synthesis, while PBP2b functions in peripheral elongation. The formation of the "lemon"-shaped cells induced by piperacillin treatment is consistent with the inhibition of PBP2x. Following the examination of treated and untreated cells by electron microscopy, the localization of the PBPs by epifluorescence microscopy, and the determination of the inhibition time course of the different PBPs, we propose a model of peptidoglycan assembly that accounts for the piperacillin paradox.


Assuntos
Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Piperacilina/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Resistência beta-Lactâmica , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Testes de Sensibilidade Microbiana , Terapia de Alvo Molecular , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/fisiologia , Resistência beta-Lactâmica/efeitos dos fármacos
20.
Methods Mol Biol ; 1091: 229-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24203337

RESUMO

There is increasing interest in applying NMR spectroscopy to the study of large protein assemblies. Development of methyl-specific labeling protocols combined with improved NMR spectroscopy enable nowadays studies of proteins complexes up to 1 MDa. For such large complexes, the major interest lies in obtaining structural, dynamic and interaction information in solution, which requires sequence-specific resonance assignment of NMR signals. While such analysis is quite standard for small proteins, it remains one of the major bottlenecks when the size of the protein increases. Here, we describe implementation and latest improvements of SeSAM, a fast and user-friendly approach for assignment of methyl resonances in large proteins using mutagenesis. We have improved culture medium to boost the production of methyl-specifically labeled proteins, allowing us to perform small-scale parallel production and purification of a library of (13)CH3-specifically labeled mutants. This optimized protocol is illustrated by assignment of Alanine, Isoleucine, and Valine methyl groups of the homododecameric aminopeptidase PhTET2. We estimated that this improved method allows assignment of ca. 100 methyl cross-peaks in 2 weeks, including 4 days of NMR time and less than 2 k€ of isotopic materials.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Aminoácidos/química , Biblioteca Gênica , Marcação por Isótopo , Peso Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...