Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662072

RESUMO

The production of nanoparticles for biomedical applications (namely with antimicrobial and anticancer properties) has been significantly hampered using traditional physicochemical approaches, which often produce nanostructures with poor biocompatibility properties requiring post-synthesis functionalization to implement features that such biomedical applications require. As an alternative, green nanotechnology and the synthesis of environmentally friendly nanomaterials have been gaining attention over the last few decades, using living organisms or biomolecules derived from them, as the main raw materials to produce cost-effective, environmentally friendly, and ready-to-be-used nanomaterials. In this article and building upon previous knowledge, we have designed and implemented the synthesis of selenium and tellurium nanoparticles using extracts from fresh jalapeño and habanero peppers. After characterization, in this study, the nanoparticles were tested for both their antimicrobial and anticancer features against isolates of antibiotic-resistant bacterial strains and skin cancer cell lines, respectively. The nanosystems produced nanoparticles via a fast, eco-friendly, and cost-effective method showing different antimicrobial profiles between elements. While selenium nanoparticles lacked an antimicrobial effect at the concentrations tested, those made of tellurium produced a significant antibacterial effect even at the lowest concentration tested. These effects were correlated when the nanoparticles were tested for their cytocompatibility and anticancer properties. While selenium nanoparticles were biocompatible and had a dose-dependent anticancer effect, tellurium-based nanoparticles lacked such biocompatibility while exerting a powerful anti-cancer effect. Further, this study demonstrated a suitable mechanism of action for killing bacteria and cancer cells involving reactive oxygen species (ROS) generation. In summary, this study introduces a new green nanomedicine synthesis approach to create novel selenium and tellurium nanoparticles with attractive properties for numerous biomedical applications.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670538

RESUMO

Cancer and antimicrobial resistance to antibiotics are two of the most worrying healthcare concerns that humanity is facing nowadays. Some of the most promising solutions for these healthcare problems may come from nanomedicine. While the traditional synthesis of nanomaterials is often accompanied by drawbacks such as high cost or the production of toxic by-products, green nanotechnology has been presented as a suitable solution to overcome such challenges. In this work, an approach for the synthesis of tellurium (Te) nanostructures in aqueous media has been developed using aloe vera (AV) extracts as a unique reducing and capping agent. Te-based nanoparticles (AV-TeNPs), with sizes between 20 and 60 nm, were characterized in terms of physicochemical properties and tested for potential biomedical applications. A significant decay in bacterial growth after 24 h was achieved for both Methicillin-resistant Staphylococcus aureus and multidrug-resistant Escherichia coli at a relative low concentration of 5 µg/mL, while there was no cytotoxicity towards human dermal fibroblasts after 3 days of treatment. AV-TeNPs also showed anticancer properties up to 72 h within a range of concentrations between 5 and 100 µg/mL. Consequently, here, we present a novel and green approach to produce Te-based nanostructures with potential biomedical applications, especially for antibacterial and anticancer applications.

3.
Cancer Drug Resist ; 4(2): 264-297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582024

RESUMO

Cancer is one of the biggest healthcare concerns in our century, a disease whose treatment has become even more difficult following reports of drug-resistant tumors. When this happens, chemotherapy treatments fail or decrease in efficiency, leading to catastrophic consequences to the patient. This discovery, along with the fact that drug resistance limits the efficacy of current treatments, has led to a new wave of discovery for new methods of treatment. The use of nanomedicine has been widely studied in current years as a way to effectively fight drug resistance in cancer. Research in the area of cancer nanotechnology over the past decades has led to tremendous advancement in the synthesis of tailored nanoparticles with targeting ligands that can successfully attach to chemotherapy-resistant cancer by preferentially accumulating within the tumor region through means of active and passive targeting. Consequently, these approaches can reduce the off-target accumulation of their payload and lead to reduced cytotoxicity and better targeting. This review explores some categories of nanocarriers that have been used in the treatment of drug-resistant cancers, including polymeric, viral, lipid-based, metal-based, carbon-based, and magnetic nanocarriers, opening the door for an exciting field of discovery that holds tremendous promise in the treatment of these tumors.

4.
Expert Opin Drug Deliv ; 18(6): 715-736, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33332168

RESUMO

Introduction: Current brain cancer treatments, based on radiotherapy and chemotherapy, are sometimes successful, but they are not free of drawbacks.Areas covered: Traditional methods for the treatment of brain tumors are discussed here with new solutions presented, among which the application of nanotechnology has demonstrated promising results over the past decade. The traditional synthesis of nanostructures, which relies on the use of physicochemical methodologies are discussed, and their associated concerns in terms of environmental and health impact due to the production of toxic by-products, need for toxic catalysts, and their lack of biocompatibility are presented. An overview of the current situation for treating brain tumors using nanotechnological-based approaches is introduced, and some of the latest advances in the application of green nanomaterials (NMs) for the effective targeting of brain tumors are presented.Expert opinion: Green nanotechnology is introduced as a potential solution to toxic NMs through the application of environmentally friendly and cost-effective protocols using living organisms and biomolecules. The current status of this field, such as those involving clinical trials, is included, and the possible limitations of green-NMs and potential ways to avoid those limitations are discussed so that the field can potentially evolve.


Assuntos
Neoplasias Encefálicas , Nanoestruturas , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Nanotecnologia
5.
Int J Nanomedicine ; 15: 3577-3595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547015

RESUMO

Breast cancer remains as a concerning global health issue, being the second leading cause of cancer deaths among women in the United States (US) in 2019. Therefore, there is an urgent and substantial need to explore novel strategies to combat breast cancer. A potential solution may come from the use of cancer nanotechnology, an innovative field of study which investigates the potential of nanomaterials for cancer diagnosis, therapy, and theranostic applications. Consequently, the theranostic functionality of cancer nanotechnology has been gaining much attention between scientists during the past few years and is growing exponentially. The use of biosynthesized gold nanoparticles (AuNPs) has been explored as an efficient mechanism for the treatment of breast cancer. The present study supposed a global systematic review to evaluate the effectiveness of biogenic AuNPs for the treatment of breast cancer and their anticancer molecular mechanisms through in vitro studies. Online electronic databases, including Cochrane, PubMed, Scopus, Web of Science, Science Direct, ProQuest, and Embase, were searched for the articles published up to July 16, 2019. Our findings revealed that plant-mediated synthesis was the most common approach for the generation of AuNPs. Most of the studies reported spherical or nearly spherical-shaped AuNPs with a mean diameter less than 100 nm in size. A significantly larger cytotoxicity was observed when the biogenic AuNPs were tested towards breast cancer cells compared to healthy cells. Moreover, biogenic AuNPs demonstrated significant synergistic activity in combination with other anticancer drugs through in vitro studies. Although we provided strong and comprehensive preliminary in vitro data, further in vivo investigations are required to show the reliability and efficacy of these NPs in animal models.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Ouro/farmacologia , Nanopartículas Metálicas/química , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo
6.
ACS Omega ; 5(6): 2660-2669, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32095689

RESUMO

Currently, antibiotic resistance and cancer are two of the most important public health problems killing more than ∼1.5 million people annually, showing that antibiotics and current chemotherapeutics are not as effective as they were in the past. Nanotechnology is presented here as a potential solution. However, current protocols for the traditional physicochemical synthesis of nanomaterials are not free of environmental and social drawbacks, often involving the use of toxic catalysts. This article shows the production of pure naked selenium nanoparticles (SeNPs) by a novel green process called pulsed laser ablation in liquids (PLAL). After the first set of irradiations, another set was performed to reduce the size below 100 nm, which resulted in a colloidal solution of spherical SeNPs with two main populations having sizes around ∼80 and ∼10 nm. The particles after the second set of irradiations also showed higher colloidal stability. SeNPs showed a dose-dependent antibacterial effect toward both standard and antibiotic-resistant phenotypes of Gram-negative and Gram-positive bacteria at a range of concentrations between 0.05 and 25 ppm. Besides, the SeNPs showed a low cytotoxic effect when cultured with human dermal fibroblasts cells at a range of concentrations up to 1 ppm while showing an anticancer effect toward human melanoma and glioblastoma cells at the same concentration range. This article therefore introduces the possibility of using totally naked SeNPs synthesized by a new PLAL protocol as a novel and efficient nanoparticle fabrication process for biomedical applications.

7.
Expert Opin Drug Deliv ; 17(3): 341-356, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32064959

RESUMO

Introduction: Current treatments for osteogenic disorders are often successful, however they are not free of drawbacks, such as toxicity or side effects. Nanotechnology offers a platform for drug delivery in the treatment of bone disorders, which can overcome such limitations. Nevertheless, traditional synthesis of nanomaterials presents environmental and health concerns due to its production of toxic by-products, the need for extreme and harsh raw materials, and their lack of biocompatibility over time.Areas covered: This review article contains an overview of the current status of treating osteogenic disorders employing green nanotechnological approaches, showing some of the latest advances in the application of green nanomaterials, as drug delivery carriers, for the effective treatment of osteogenic disorders.Expert opinion: Green nanotechnology, as a potential solution, is understood as the use of living organisms, biomolecules and environmentally friendly processes for the production of nanomaterials. Nanomaterials derived from bacterial cultures or biomolecules isolated from living organisms, such as carbohydrates, proteins, and nucleic acids, have been proven to be effective composites. These nanomaterials introduce enhancements in the treatment and prevention of osteogenic disorders, compared to physiochemically-synthesized nanostructures, specifically in terms of their improved cell attachment and proliferation, as well as their ability to prevent bacterial adhesion.


Assuntos
Doenças Ósseas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanotecnologia , Portadores de Fármacos/química , Humanos , Nanoestruturas
8.
Green Chem ; 21(8): 1982-1988, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31156349

RESUMO

Bacterial infections and cancer are two of the most significant concerns that the current healthcare system should tackle nowadays. Green nanotechnology is presented as a feasible solution that is able to produce materials with significant anticancer and antibacterial activity, while overcoming the main limitations of traditional synthesis. In the present work, orange, lemon and lime extracts were used as both reducing and capping agents for the green synthesis of tellurium nanoparticles (TeNPs) using a microwave-assisted reaction. TeNPs showed a uniform size distribution, and rod- and cubic-shapes, and were extensively characterized in terms of morphology, structure and composition using TEM, SEM, XPS, XRD, FTIR and EDX analysis. TeNPs showed an important antibacterial activity against both Gram-negative and -positive bacteria in a range concentrations from 5 to 50 µg/mL over a 24-hour time period. Besides, nanoparticles showed anticancer effect towards human melanoma cells over 48 hours at concentrations up to 50 µg/mL. Moreover, the Te nanostructures showed no significant cytotoxic effect towards human dermal fibroblast at concentrations up to 50 µg/mL. Therefore, we present an environmentally-friendly and cost-effective synthesis of TeNPs using only fruit juices and showing enhanced and desirable biomedical properties towards both infectious diseases and cancer.

9.
Int J Nanomedicine ; 14: 3155-3176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118629

RESUMO

BACKGROUND: Traditional physicochemical approaches for the synthesis of compounds, drugs, and nanostructures developed as potential solutions for antimicrobial resistance or against cancer treatment are, for the most part, facile and straightforward. Nevertheless, these approaches have several limitations, such as the use of toxic chemicals and production of toxic by-products with limited biocompatibility. Therefore, new methods are needed to address these limitations, and green chemistry offers a suitable and novel answer, with the safe and environmentally friendly design, manufacturing, and use of minimally toxic chemicals. Green chemistry approaches are especially useful for the generation of metallic nanoparticles or nanometric structures that can effectively and efficiently address health care concerns. OBJECTIVE: Here, tellurium (Te) nanowires were synthesized using a novel green chemistry approach, and their structures and cytocompatibility were evaluated. METHOD: An easy and straightforward hydrothermal method was employed, and the Te nanowires were characterized using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and optical microscopy for morphology, size, and chemistry. Cytotoxicity tests were performed with human dermal fibroblasts and human melanoma cells (to assess anticancer properties). The results showed that a treatment with Te nanowires at concentrations between 5 and 100 µg/mL improved the proliferation of healthy cells and decreased cancerous cell growth over a 5-day period. Most importantly, the green chemistry -synthesized Te nanowires outperformed those produced by traditional synthetic chemical methods. CONCLUSION: This study suggests that green chemistry approaches for producing Te nanostructures may not only reduce adverse environmental effects resulting from traditional synthetic chemistry methods, but also be more effective in numerous health care applications.


Assuntos
Antineoplásicos/farmacologia , Química Verde/métodos , Nanopartículas Metálicas/química , Nanofios/química , Telúrio/química , Morte Celular , Linhagem Celular Tumoral , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Humanos , Concentração Inibidora 50 , Melanoma/patologia , Melanoma/ultraestrutura , Nanopartículas Metálicas/ultraestrutura , Nanofios/ultraestrutura , Espectroscopia Fotoeletrônica , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
10.
Int J Nanomedicine ; 14: 2171-2190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30988615

RESUMO

BACKGROUND AND AIM: Bimetallic silver/gold nanosystems are expected to significantly improve therapeutic efficacy compared to their monometallic counterparts by maintaining the general biocompatibility of gold nanoparticles (AuNPs) while, at the same time, decreasing the relatively high toxicity of silver nanoparticles (AgNPs) toward healthy human cells. Thus, the aim of this research was to establish a highly reproducible one-pot green synthesis of colloidal AuNPs and bimetallic Ag/Au alloy nanoparticles (NPs; Ag/AuNPs) using starch as reducing and capping agent. METHODS: The optical properties, high reproducibility, stability and particle size distribution of the colloidal NPs were analyzed by ultraviolet (UV)-visible spectroscopy, dynamic light scattering (DLS) and ζ-potential. The presence of starch as capping agent was determined by Fourier transform infrared (FT-IR) spectroscopy. The structural properties were studied by X-ray diffraction (XRD). Transmission electron microscopy (TEM) imaging was done to determine the morphology and size of the nanostructures. The chemical composition of the nanomaterials was determined by energy-dispersive X-ray spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. To further study the biomedical applications of the synthesized nanostructures, antibacterial studies against multidrug-resistant (MDR) Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) were conducted. In addition, the NPs were added to the growth media of human dermal fibroblast (HDF) and human melanoma cells to show their cytocompatibility and cytotoxicity, respectively, over a 3-day experiment. RESULTS: UV-visible spectroscopy confirmed the highly reproducible green synthesis of colloidal AuNPs and Ag/AuNPs. The NPs showed a face-centered cubic crystal structure and an icosahedral shape with mean particle sizes of 28.5 and 9.7 nm for AuNPs and Ag/AuNPs, respectively. The antibacterial studies of the NPs against antibiotic-resistant bacterial strains presented a dose-dependent antimicrobial behavior. Furthermore, the NPs showed cytocompat-ibility towards HDF, but a dose-dependent anticancer effect was found when human melanoma cells were grown in presence of different NP concentrations for 72 hours. CONCLUSION: In this study, mono- and bimetallic NPs were synthesized for the first time using a highly reproducible, environmentally friendly, cost-effective and quick method and were successfully characterized and tested for several anti-infection and anticancer biomedical applications.


Assuntos
Antibacterianos/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Amido/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Coloides/síntese química , Coloides/química , Contagem de Colônia Microbiana , Difusão Dinâmica da Luz , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Fibroblastos/efeitos dos fármacos , Humanos , Hidrodinâmica , Nanopartículas Metálicas/ultraestrutura , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Reprodutibilidade dos Testes , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Difração de Raios X
11.
Nanomedicine ; 17: 36-46, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30654187

RESUMO

Nanocolumnar titanium coatings have been fabricated in two sputtering systems with very different characteristics (a laboratory setup and semi-industrial equipment), thus possessing different morphologies (150 nm long columns tilted 20° from the normal and 300 nm long ones tilted 40°, respectively). These coatings exhibit similar antibacterial properties against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) bacteria. When a synergic route is followed and these coatings are functionalized with tellurium (Te) nanorods, the antibacterial properties are enhanced, especially for the long nanocolumns case. The biocompatibility is preserved in all the nanostructured coatings.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Telúrio/farmacologia , Titânio/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Humanos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Telúrio/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...