Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(23): 237203, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337215

RESUMO

We have studied the nucleation of magnetic domains and propagation of magnetic domain walls (DWs) induced by pulsed magnetic field in a ferromagnetic film with in-plane uniaxial anisotropy. In contrast to observed behavior in films with out-of-plane anisotropy, the nucleated domains have a rectangular shape in which a pair of the opposite sides are perfectly linear DWs, while the other pair present zigzags. The field induced propagation of these two DW types are found to be different. The linear ones follow a creep law identical to what is usually observed in out-of-plane films, while the velocity of zigzag DWs depends linearly on the applied field amplitude down to very low field. This unexpected feature can be explained by the shape of the DW, and these results provide first experimental evidence of the applicability of the 1D model in two-dimensional ferromagnetic thin films.

2.
Nano Lett ; 18(12): 7635-7641, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30380877

RESUMO

The mechanical manipulation of magnetic nanoparticles is a powerful approach to probing and actuating biological processes in living systems. Implementing this technique in high-throughput assays can be achieved using biocompatible micromagnet arrays. However, the magnetic properties of these arrays are usually indirectly inferred from simulations or Stokes drag measurements, leaving unresolved questions about the actual profile of the magnetic fields at the micrometer scale and the exact magnetic forces that are applied. Here, we exploit the magnetic field sensitivity of nitrogen-vacancy color centers in diamond to map the 3D stray magnetic field produced by a single soft ferromagnetic microstructure. By combining this wide-field optical magnetometry technique with magneto-optic Kerr effect microscopy, we fully analyze the properties of the micromagnets, including their magnetization saturation and their size-dependent magnetic susceptibility. We further show that the high magnetic field gradients produced by the micromagnets, greater than 104 T·m-1 under an applied magnetic field of about 100 mT, enables the manipulation of magnetic nanoparticles smaller than 10 nm inside living cells. This work paves the way for quantitative and parallelized experiments in magnetogenetics and magnetomechanics in cell biology.


Assuntos
Materiais Biocompatíveis/química , Diamante/química , Magnetometria/métodos , Imãs/química , Fenômenos Biomecânicos , Desenho de Equipamento , Células HeLa , Humanos , Lasers , Campos Magnéticos , Magnetometria/instrumentação , Microscopia/instrumentação , Microscopia/métodos , Nanopartículas/química , Nitrogênio/química , Dispositivos Ópticos , Tamanho da Partícula
3.
Nanotechnology ; 29(36): 365502, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-29916819

RESUMO

Magnetic sensors based on magnetoresistance effects have promising application prospects due to their excellent sensitivity and their advantages in terms of integration. However, the competition between higher sensitivity and a larger measuring range remains a problem. Here, we propose a novel mechanism for designing magnetoresistive sensors: probing the perpendicular field by detecting the expansion of the elastic magnetic domain wall in the free layer of a spin valve or a magnetic tunnel junction. The performances of devices based on this mechanism, such as the sensitivity and the measuring range, can be tuned by manipulating the geometry of the device. This can be achieved without changing the intrinsic properties of the material, thus promising a higher integration level and a better performance. The mechanism is theoretically explained based on the experimental results. Two examples are proposed and their functionality and performances are verified via a micromagnetic simulation.

4.
Nat Commun ; 7: 13532, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27848936

RESUMO

Electric field effects in ferromagnetic metal/dielectric structures provide a new route to control domain wall dynamics with low-power dissipation. However, electric field effects on domain wall velocities have only been observed so far in the creep regime where domain wall velocities are low due to strong interactions with pinning sites. Here we show gate voltage modulation of domain wall velocities ranging from the creep to the flow regime in Ta/Co40Fe40B20/MgO/TiO2 structures with perpendicular magnetic anisotropy. We demonstrate a universal description of the role of applied electric fields in the various pinning-dependent regimes by taking into account an effective magnetic field being linear with the electric field. In addition, the electric field effect is found to change sign in the Walker regime. Our results are consistent with voltage-induced modification of magnetic anisotropy. Our work opens new opportunities for the study and optimization of electric field effect at ferromagnetic metal/insulator interfaces.

5.
Sci Rep ; 6: 35062, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725741

RESUMO

Racetrack memory (RM) has sparked enormous interest thanks to its outstanding potential for low-power, high-density and high-speed data storage. However, since it requires bi-directional domain wall (DW) shifting process for outputting data, the mainstream stripe-shaped concept certainly suffers from the data overflow issue. This geometrical restriction leads to increasing complexity of peripheral circuits or programming as well as undesirable reliability issue. In this work, we propose and study ring-shaped RM, which is based on an alternative mechanism, spin orbit torque (SOT) driven chiral DW motions. Micromagnetic simulations have been carried out to validate its functionality and exhibit its performance advantages. The current flowing through the heavy metal instead of ferromagnetic layer realizes the "end to end" circulation of storage data, which remains all the data in the device even if they are shifted. It blazes a promising path for application of RM in practical memory and logic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...