Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Pharmaceutics ; 15(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631257

RESUMO

The Corning Epic® label-free (ELF) system is an innovative technology widely used in drug discovery, immunotherapy, G-protein-associated studies, and biocompatibility tests. Here, we challenge the use of ELF to further investigate the biocompatibility of resins used in manufacturing of blood filters, a category of medical devices representing life-saving therapies for the increasing number of patients with kidney failure. The biocompatibility assays were carried out by developing a cell model aimed at mimicking the clinical use of the blood filters and complementing the existing cytotoxicity assay requested by ISO10993-5. Experiments were performed by putting fibroblasts in both direct contact with two types of selected resins, and indirect contact by means of homemade customized well inserts that were precisely designed and developed for this technology. For both types of contact, fibroblasts were cultured in medium and human plasma. ELF tests confirmed the biocompatibility of both resins, highlighting a statistically significant different biological behavior of a polyaromatic resin compared to control and ion-exchanged resin, when materials were in indirect contact and soaking with plasma. Overall, the ELF test is able to mimic clinical scenarios and represents a promising approach to investigate biocompatibility, showing peculiar biological behaviors and suggesting the activation of specific intracellular pathways.

2.
Biomed Pharmacother ; 165: 115146, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37467651

RESUMO

Fibrosis is shared in multiple diseases with progressive tissue stiffening, organ failure and limited therapeutic options. This unmet need is also due to the lack of adequate pre-clinical models to mimic fibrosis and to be challenged novel by anti-fibrotic therapeutic venues. Here using bioprinting, we designed a novel 3D model where normal human healthy fibroblasts have been encapsulated in type I collagen. After stimulation by Transforming Growth factor beta (TGFß), embedded cells differentiated into myofibroblasts and enhanced the contractile activity, as confirmed by the high level of α - smooth muscle actin (αSMA) and F-actin expression. As functional assays, SEM analysis revealed that after TGFß stimulus the 3D microarchitecture of the scaffold was dramatically remolded with an increased fibronectin deposition with an abnormal collagen fibrillar pattern. Picrius Sirius Red staining additionally revealed that TGFß stimulation enhanced of two logarithm the collagen fibrils neoformation in comparison with control. These data indicate that by bioprinting technology, it is possible to generate a reproducible and functional 3D platform to mimic fibrosis as key tool for drug discovery and impacting on animal experimentation and reducing costs and time in addressing fibrosis.


Assuntos
Colágeno Tipo I , Fator de Crescimento Transformador beta , Animais , Humanos , Fibrose , Colágeno Tipo I/metabolismo , Diferenciação Celular/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo
3.
PLoS One ; 18(2): e0282059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36812218

RESUMO

In industrialized countries, health care associated infections, the fourth leading cause of disease, are a major health issue. At least half of all cases of nosocomial infections are associated with medical devices. Antibacterial coatings arise as an important approach to restrict the nosocomial infection rate without side effects and the development of antibiotic resistance. Beside nosocomial infections, clot formation affects cardiovascular medical devices and central venous catheters implants. In order to reduce and prevent such infection, we develop a plasma-assisted process for the deposition of nanostructured functional coatings on flat substrates and mini catheters. Silver nanoparticles (Ag NPs) are synthesized exploiting in-flight plasma-droplet reactions and are embedded in an organic coating deposited through hexamethyldisiloxane (HMDSO) plasma assisted polymerization. Coating stability upon liquid immersion and ethylene oxide (EtO) sterilization is assessed through chemical and morphological analysis carried out by means of Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). In the perspective of future clinical application, an in vitro analysis of anti-biofilm effect has been done. Moreover, we employed a murine model of catheter-associated infection which further highlighted the performance of Ag nanostructured films in counteract biofilm formation. The anti-clot performances coupled by haemo- and cytocompatibility assays have also been performed.


Assuntos
Nanopartículas Metálicas , Prata , Camundongos , Animais , Prata/química , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Biofilmes
4.
Pharmaceutics ; 14(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36297562

RESUMO

Osteonecrosis of the femoral head (ONFH) is a progressive degenerative disease that ultimately requires a total hip replacement. Mesenchymal stromal/stem cells (MSCs), particularly the ones isolated from bone marrow (BM), could be promising tools to restore bone tissue in ONFH. Here, we established a rabbit model to mimic the pathogenic features of human ONFH and to challenge an autologous MSC-based treatment. ON has been originally induced by the synergic combination of surgery and steroid administration. Autologous BM-MSCs were then implanted in the FH, aiming to restore the damaged tissue. Histological analyses confirmed bone formation in the BM-MSC treated rabbit femurs but not in the controls. In addition, the model also allowed investigations on BM-MSCs isolated before (ON-BM-MSCs) and after (ON+BM-MSCs) ON induction to dissect the impact of ON damage on MSC behavior in an affected microenvironment, accounting for those clinical approaches foreseeing MSCs generally isolated from affected patients. BM-MSCs, isolated before and after ON induction, revealed similar growth rates, immunophenotypic profiles, and differentiation abilities regardless of the ON. Our data support the use of ON+BM-MSCs as a promising autologous therapeutic tool to treat ON, paving the way for a more consolidated use into the clinical settings.

5.
Cells ; 11(18)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139372

RESUMO

The resorption rate of autologous fat transfer (AFT) is 40-60% of the implanted tissue, requiring new surgical strategies for tissue reconstruction. We previously demonstrated in a rabbit model that AFT may be empowered by adipose-derived mesenchymal stromal/stem cells (AD-MSCs), which improve graft persistence by exerting proangiogenic/anti-inflammatory effects. However, their fate after implantation requires more investigation. We report a xenograft model of adipose tissue engineering in which NOD/SCID mice underwent AFT with/without human autologous AD-MSCs and were monitored for 180 days (d). The effect of AD-MSCs on AFT grafting was also monitored by evaluating the expression of CD31 and F4/80 markers. Green fluorescent protein-positive AD-MSCs (AD-MSC-GFP) were detected in fibroblastoid cells 7 days after transplantation and in mature adipocytes at 60 days, indicating both persistence and differentiation of the implanted cells. This evidence also correlated with the persistence of a higher graft weight in AFT-AD-MSC compared to AFT alone treated mice. An observation up to 180 d revealed a lower resorption rate and reduced lipidic cyst formation in the AFT-AD-MSC group, suggesting a long-term action of AD-MSCs in support of AFT performance and an anti-inflammatory/proangiogenic activity. Together, these data indicate the protective role of adipose progenitors in autologous AFT tissue resorption.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Animais , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Coelhos
6.
Am J Cancer Res ; 11(9): 4500-4514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659901

RESUMO

This study assesses the expression of all TNF-related apoptosis-inducing ligand (TRAIL) receptors in pancreatic ductal adenocarcinoma (PDAC) tumor tissue. We aimed to include TRAIL receptor expression as an inclusion parameter in a future clinical study using a TRAIL-based therapy approach for PDAC patients. Considering the emerging influence of PDAC desmoplastic stroma on the efficacy of anti-PDAC therapies, this analysis was extended to tumor stromal cells. Additionally, we performed PDAC stroma characterization. Our retrospective cohort study (N=50) included patients with histologically confirmed PDAC who underwent surgery. The expression of TRAIL receptors (DR4, DR5, DcR1, DcR2, and OPG) in tumor and stromal cells was evaluated by immunohistochemistry (IHC). The amount of tumor stroma was assessed by anti-vimentin IHC and Mallory's trichrome staining. The prognostic impact was determined by the univariate Cox proportional hazards regression model. An extensive expression of functional receptors DR4 and DR5 and a variable expression of decoy receptors were detected in PDAC tumor and stromal cells. Functional receptors were detected also in metastatic tumor and stromal cells. A poor prognosis was associated with low or absent expression of decoy receptors in tumor cells of primary PDAC. After assessing that almost 80% of tumor mass was composed of stroma, we correlated a cellular-dense stroma in primary PDAC with reduced relapse-free survival. We demonstrated that TRAIL functional receptors are widely expressed in PDAC, representing a promising target for TRAIL-based therapies. Further, we demonstrated that a low expression of DcR1 and the absence of OPG in tumor cells, as well as a cellular-dense tumor stroma, could negatively impact the prognosis of PDAC patients.

7.
Stem Cell Res Ther ; 12(1): 481, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454577

RESUMO

INTRODUCTION: Adipose tissue (AT) has become a source of mesenchymal stromal/stem cells (MSC) for regenerative medicine applications, in particular skeletal disorders. Several enzymatic or mechanical procedures have been proposed to process AT with the aim to isolate cells that can be locally implanted. How AT is processed may impact its properties. Thus, we compared AT processed by centrifugation (C-AT) to microfragmentation (MF-AT). Focusing on MF-AT, we subsequently assessed the impact of synovial fluid (SF) alone on both MF-AT and isolated AT-MSC to better understand their cartilage repair mechanisms. MATERIALS AND METHODS: MF-AT and C-AT from the same donors were compared by histology and qRT-PCR immediately after isolation or as ex vivo cultures using a micro-tissue pellet system. The in vitro impact of SF on MF-AT and AT-MSC was assessed by histological staining and molecular analysis. RESULTS: The main AT histological features (i.e., increased extracellular matrix and cellularity) of the freshly isolated or ex vivo-cultured MF-AT persisted compared to C-AT, which rapidly deteriorated during culture. Based on our previous studies of HOX genes in MSC, we investigated the involvement of Homeobox Protein HOX-B7 (HOXB7) and its target basic Fibroblast Growth Factor (bFGF) in the molecular mechanism underlying the improved performance of MF-AT. Indeed, both these biomarkers were more prominent in freshly isolated MF-AT compared to C-AT. SF alone preserved the AT histological features of MF-AT, together with HOXB7 and bFGF expression. Increased cell performance was also observed in isolated AT-MSC after SF treatment concomitant with enhanced HOXB7 expression, although there was no apparent association with bFGF. CONCLUSIONS: Our findings show that MF has a positive effect on the maintenance of AT histology and may trigger the expression of trophic factors that improve tissue repair by processed AT.


Assuntos
Genes Homeobox , Células-Tronco Mesenquimais , Tecido Adiposo , Diferenciação Celular , Células Cultivadas , Líquido Sinovial
8.
Artigo em Inglês | MEDLINE | ID: mdl-34070102

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, scientific authorities strongly suggested the use of face masks (FMs). FM materials (FMMs) have to satisfy the medical device biocompatibility requirements as indicated in the technical standard EN ISO 10993-1:2018. The biologic evaluation must be confirmed by in vivo tests to verify cytotoxicity, sensitisation, and skin irritation. Some of these tests require an extensive period of time for their execution, which is incompatible with an emergency situation. In this study, we propose to verify the safety of FMMs combining the assessment of 3-[4,5-dimethylthiazolyl-2]-2,5-diphenyltetrazolium bromide (MTT) with quantification of nitric oxide (NO) and interleukin-6 (IL-6), as predictive markers of skin sensitisation or irritation based on human primary fibroblasts. Two hundred and forty-two FMMs were collected and classified according to spectrometer IR in polypropylene, paper, cotton, polyester, polyethylene terephthalate, 3-dimensional printing, and viscose. Of all FMMs tested, 50.8% passed all the assays, 48% failed at least one, and only 1.2% failed all. By a low cost, rapid and highly sensitive multi assays strategy tested on human skin fibroblasts against a large variety of FMMs, we propose a strategy to promptly evaluate biocompatibility in wearable materials.


Assuntos
COVID-19 , Pandemias , Humanos , Máscaras , SARS-CoV-2 , Têxteis
9.
Int J Artif Organs ; 44(2): 75-84, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33522378

RESUMO

Polyvinylchloride is universally agreed upon to be the material of choice for tubings and for containers for medical application. Many alterations of the chemical/physical surface conditions, mainly due to an altered extrusion process, could influence its biocompatibility by promoting platelet aggregation. Biocompatibility and safety of the medical device must be preserved, also monitoring the migration of additives within polyvinylchloride during the diffusion process. A large variety of methods are used to verify the correct composition and extrusion of polyvinylchloride but, generally, they need long experimental time and are expensive. The aim of the study is to propose a simple, economic and rapid approach based on Fourier transform-infrared spectroscopy and Coomassie Blue staining. The method has been used to detect chemical and morphological defects caused by an altered extrusion process on 20/75 polyvinylchloride tubings in a blind test. This approach positively identified altered samples in 80% of the cases. The suggested approach represents a reliable and versatile method to detect and monitor surface defects by an easy, inexpensive and reproducible method.


Assuntos
Segurança de Equipamentos/métodos , Cloreto de Polivinila , Diálise Renal/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície , Humanos , Teste de Materiais/métodos , Plásticos/química , Plásticos/uso terapêutico , Agregação Plaquetária , Cloreto de Polivinila/efeitos adversos , Cloreto de Polivinila/química , Cloreto de Polivinila/uso terapêutico
10.
Artigo em Inglês | MEDLINE | ID: mdl-33557403

RESUMO

The first wave of the COVID-19 pandemic brought about a broader use of masks by both professionals and the general population. This resulted in a severe worldwide shortage of devices and the need to increase import and activate production of safe and effective surgical masks at the national level. In order to support the demand for testing surgical masks in the Italian context, Universities provided their contribution by setting up laboratories for testing mask performance before releasing products into the national market. This paper reports the effort of seven Italian university laboratories who set up facilities for testing face masks during the emergency period of the COVID-19 pandemic. Measurement set-ups were built, adapting the methods specified in the EN 14683:2019+AC. Data on differential pressure (DP) and bacterial filtration efficiency (BFE) of 120 masks, including different materials and designs, were collected over three months. More than 60% of the masks satisfied requirements for DP and BFE set by the standard. Masks made of nonwoven polypropylene with at least three layers (spunbonded-meltblown-spunbonded) showed the best results, ensuring both good breathability and high filtration efficiency. The majority of the masks created with alternative materials and designs did not comply with both standard requirements, resulting in suitability only as community masks. The effective partnering between universities and industries to meet a public need in an emergency context represented a fruitful example of the so-called university "third-mission".


Assuntos
COVID-19/prevenção & controle , Laboratórios , Máscaras/normas , Pandemias , Humanos , Itália
11.
Materials (Basel) ; 13(8)2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290545

RESUMO

In this work, a new 3D cellular model-based on human bone marrow mesenchymal stem cells (BM-MSCs)-was used for the first time to test the 45S5 Bioglass® (45S5). Such a model, previously used to evaluate the biologic performance of two novel bioactive glasses, suggested out the regenerative potential of such materials. In fact, BM-MSCs were able both to adhere and colonize the biomaterials, as well as differentiate toward osteoblasts-even in absence of specific growth factors. Surprisingly, BM-MSCs were not able to colonize 45S5 granules (almost no adhesion and/or colonization was observed), and thus, were not capable of providing any osteogenic differentiation. Therefore, the model seems to suggest that the two novel bioactive glasses have a better biologic performance than 45S5. If this hypothesis is confirmed also by in vivo tests, the 3D model may become a predictive tool for discriminating between different potential bioactive materials by comparatively evaluating them, and preliminarily selecting the best ones in relation to their biocompatibility potential-before proceeding with further experiments in vivo. This approach could favor the reduction of costs and time of pre-clinical and clinical trials.

12.
Mater Sci Eng C Mater Biol Appl ; 110: 110699, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204013

RESUMO

In this work, a new bioactive glass was designed, prepared by means of a melt-quenching route and characterized in terms of both thermal properties and biological performance. The main objective was to obtain a novel product with high temperature of crystallization in view of possible thermal treatments, as well as remarkable biological responsiveness. Thermal behavior was investigated by heating microscopy, differential thermal analysis (DTA) and sintering tests. The glass displayed a very high crystallization temperature and the samples remained completely amorphous after sintering. Bioactivity was evaluated by means of Simulated Body Fluid (SBF) assay, which is a widely used method to preliminary investigate samples' reactivity in vitro; the glass showed a strong apatite forming ability. Additionally, in order to exclude cytotoxic effects, biocompatibility was verified according to ISO standard 10993. Finally, the biological potential of the new glass was tested by using an innovative 3D cellular model, that mimicked the potential clinical application of a given biomaterial. Human bone marrow mesenchymal stem cells (BM-MSCs) were employed to study the performance of bioactive glass granules in such 3D cellular model. The results showed that the bioactive glass supported human BM-MSCs adhesion, colonization and bone differentiation. Thus, this new bioactive glass looks particularly promising for orthopedic applications, bone tissue engineering and regenerative medicine, especially when a thermal treatment is necessary for the production of specific devices.


Assuntos
Vidro/química , Materiais Biocompatíveis/química , Líquidos Corporais/química , Osso e Ossos/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Cristalização/métodos , Temperatura Alta , Humanos , Células-Tronco Mesenquimais/química , Engenharia Tecidual/métodos
13.
Injury ; 51 Suppl 1: S63-S73, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32139130

RESUMO

BACKGROUND AND STUDY AIM: Advanced therapy medicinal products (ATMP) frequently lack of clinical data on efficacy to substantiate a future clinical use. This study aims to evaluate the efficacy to heal long bone delayed unions and non-unions, as secondary objective of the EudraCT 2011-005441-13 clinical trial, through clinical and radiological bone consolidation at 3, 6 and 12 months of follow-up, with subgroup analysis of affected bone, gender, tobacco use, and time since the original fracture. PATIENTS AND METHODS: Twenty-eight patients were recruited and surgically treated with autologous bone marrow derived mesenchymal stromal cells expanded under Good Manufacturing Practices, combined to bioceramics in the surgical room before implantation. Mean age was 39 ± 13 years, 57% were males, and mean Body Mass Index 27 ± 7. Thirteen (46%) were active smokers. There were 11 femoral, 4 humeral, and 13 tibial non-unions. Initial fracture occurred at a mean ± SD of 27.9 ± 31.2 months before recruitment. Efficacy results were expressed by clinical consolidation (no or mild pain if values under 30 in VAS scale), and by radiological consolidation with a REBORNE score over 11/16 points (value of or above 0.6875). Means were statistically compared and mixed models for repeated measurements estimated the mean and confidence intervals (95%) of the REBORNE Bone Healing scale. Clinical and radiological consolidation were analyzed in the subgroups with Spearman correlation tests (adjusted by Bonferroni). RESULTS: Clinical consolidation was earlier confirmed, while radiological consolidation at 3 months was 25.0% (7/28 cases), at 6 months 67.8% (19/28 cases), and at 12 months, 92.8% (26/28 cases including the drop-out extrapolation of two failures). Bone biopsies confirmed bone formation surrounding the bioceramic granules. All locations showed similar consolidation, although this was delayed in tibial non-unions. No significant gender difference was found in 12-month consolidation (95% confidence). Higher consolidation scale values were seen in non-smoking patients at 6 (p = 0.012, t-test) and 12 months (p = 0.011, t-test). Longer time elapsed after the initial fracture did not preclude the occurrence of consolidation. CONCLUSION: Bone consolidation was efficaciously obtained with the studied expanded hBM-MSCs combined to biomaterials, by clinical and radiological evaluation, and confirmed by bone biopsies, with lower consolidation scores in smokers.


Assuntos
Materiais Biocompatíveis/farmacologia , Consolidação da Fratura/fisiologia , Fraturas Ósseas/terapia , Fraturas não Consolidadas/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Adulto , Europa (Continente) , Feminino , Fêmur/patologia , Humanos , Úmero/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Osteogênese , Radiografia , Tíbia/patologia , Transplante Autólogo , Resultado do Tratamento
15.
Materials (Basel) ; 12(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694164

RESUMO

A 3D cellular model that mimics the potential clinical application of a biomaterial is here applied for the first time to a bioactive glass, in order to assess its biological potential. A recently developed bioactive glass (BGMS10), whose composition contained strontium and magnesium, was produced in the form of granules and fully investigated in terms of biocompatibility in vitro. Apart from standard biological characterization (Simulated Body Fluid (SBF) testing and biocompatibility as per ISO10993), human bone marrow mesenchymal stromal/stem cells (BM-MSCs) were used to investigate the performance of the bioactive glass granules in an innovative 3D cellular model. The results showed that BGMS10 supported human BM-MSCs adhesion, colonization, and bone differentiation. Thus, bioactive glass granules seem to drive osteogenic differentiation and thus look particularly promising for orthopedic applications, bone tissue engineering and regenerative medicine.

16.
Stem Cells Transl Med ; 8(11): 1135-1148, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31313507

RESUMO

Identified 50 years ago, mesenchymal stromal/stem cells (MSCs) immediately generated a substantial interest among the scientific community because of their differentiation plasticity and hematopoietic supportive function. Early investigations provided evidence of a relatively low engraftment rate and a transient benefit for challenging congenital and acquired diseases. The reasons for these poor therapeutic benefits forced the entire field to reconsider MSC mechanisms of action together with their ex vivo manipulation procedures. This phase resulted in advances in MSCs processing and the hypothesis that MSC-tissue supportive functions may be prevailing their differentiation plasticity, broadening the spectrum of MSCs therapeutic potential far beyond their lineage-restricted commitments. Consequently, an increasing number of studies have been conducted for a variety of clinical indications, revealing additional challenges and suggesting that MSCs are still lagging behind for a solid clinical translation. For this reason, our aim was to dissect the current challenges in the development of still promising cell types that, after more than half a century, still need to reach their maturity. Stem Cells Translational Medicine 2019;8:1135-1148.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa , Humanos
17.
Sci Rep ; 9(1): 7154, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073193

RESUMO

Tumors develop within complex cell-to-cell interactions, with accessory cells playing a relevant role starting in the early phases of cancer progression. This event occurs in a three-dimensional (3D) environment, which to date, has been difficult to reproduce in vitro due to its complexity. While bi-dimensional cultures have generated substantial data, there is a progressive awareness that 3D culture strategies may rapidly increase the understanding of tumor development and be used in anti-cancer compound screening and for predicting response to new drugs utilizing personalized approaches. However, simple systems capable of rapidly rebuilding cancer tissues ex-vivo in 3D are needed and could be used for a variety of applications. Therefore, we developed a flat, handheld and versatile 3D cell culture bioreactor that can be loaded with tumor and/or normal cells in combination which can be monitored using a variety of read-outs. This biocompatible device sustained 3D growth of tumor cell lines representative of various cancers, such as pancreatic and breast adenocarcinoma, sarcoma, and glioblastoma. The cells repopulated the thin matrix which was completely separated from the outer space by two gas-permeable membranes and was monitored in real-time using both microscopy and luminometry, even after transportation. The device was tested in 3D cytotoxicity assays to investigate the anti-cancer potential of chemotherapy, biologic agents, and cell-based therapy in co-cultures. The addition of luciferase in target cancer cells is suitable for comparative studies that may also involve parallel in vivo investigations. Notably, the system was challenged using primary tumor cells harvested from lung cancer patients as an innovative predictive functional assay for cancer responsiveness to checkpoint inhibitors, such as nivolumab. This bioreactor has several novel features in the 3D-culture field of research, representing a valid tool useful for cancer investigations, drug screenings, and other toxicology approaches.


Assuntos
Técnicas de Cultura de Células/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Terapia Genética/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico
18.
Stem Cell Res Ther ; 10(1): 101, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890185

RESUMO

BACKGROUND: The ex vivo expansion potential of mesenchymal stromal/stem cells (MSC) together with their differentiation and secretion properties makes these cells an attractive tool for transplantation and tissue engineering. Although the use of MSC is currently being tested in a growing number of clinical trials, it is still desirable to identify molecular markers that may help improve their performance both in vitro and after transplantation. METHODS: Recently, HOXB7 was identified as a master player driving the proliferation and differentiation of bone marrow mesenchymal progenitors. In this study, we investigated the effect of HOXB7 overexpression on the ex vivo features of adipose mesenchymal progenitors (AD-MSC). RESULTS: HOXB7 increased AD-MSC proliferation potential, reduced senescence, and improved chondrogenesis together with a significant increase of basic fibroblast growth factor (bFGF) secretion. CONCLUSION: While further investigations and in vivo models shall be applied for better understanding, these data suggest that modulation of HOXB7 may be a strategy for innovative tissue regeneration applications.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular , Proliferação de Células , Condrogênese , Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Adulto , Idoso , Senescência Celular , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade
19.
Cytotherapy ; 21(4): 468-482, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30926359

RESUMO

BACKGROUND: Many data are available on expansion protocols for mesenchymal stromal cells (MSCs) for both experimental settings and manufacturing for clinical trials. However, there is a lack of information on translation of established protocols for Good Manufacturing Practice (GMP) from validation to manufacturing for clinical application. We present the validation and translation of a standardized pre-clinical protocol for isolation and expansion of MSCs for a clinical trial for reconstitution of alveolar bone. METHODS: Key parameters of 22 large-scale expansions of MSCs from bone marrow (BM) for validation were compared with 11 expansions manufactured for the clinical trial "Jaw bone reconstruction using a combination of autologous mesenchymal stromal cells and biomaterial prior to dental implant placement (MAXILLO1)" aimed at reconstruction of alveolar bone. RESULTS: Despite variations of the starting material, the robust protocol led to stable performance characteristics of expanded MSCs. Manufacturing of the autologous advanced therapy medicinal product MAXILLO-1-MSC was possible, requiring 21 days for each product. Transport of BM aspirates and MSCs within 24 h was guaranteed. MSCs fulfilled quality criteria requested by the national competent authority. In one case, the delivered MSCs developed a mosaic in chromosomal finding, showing no abnormality in differentiation capacity, growth behavior or surface marker expression during long-term culture. The proportion of cells with the mosaic decreased in long-term culture and cells stopped growth after 38.4 population doublings. CONCLUSIONS: Clinical use of freshly prepared MSCs, manufactured according to a standardized and validated protocol, is feasible for bone regeneration, even if there was a long local distance between manufacturing center and clinical site. Several parameters, such as colony forming units fibroblasts (CFU-F), percentage of CD34+ cells, cell count of mononuclear cells (MNCs) and white blood cells (WBCs), of the BM may serve as a predictive tool for the yield of MSCs and may help to avoid unnecessary costs for MSC manufacturing due to insufficient cell expansion rates.


Assuntos
Técnicas de Cultura de Células/normas , Células-Tronco Mesenquimais/citologia , Pesquisa Translacional Biomédica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/citologia , Contagem de Células , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Cariotipagem , Masculino , Pessoa de Meia-Idade , Padrões de Referência , Doadores de Tecidos , Adulto Jovem
20.
Theranostics ; 9(2): 436-448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809285

RESUMO

Pancreatic cancer is the fourth leading cause of cancer death in western countries with more than 100,000 new cases per year in Europe and a mortality rate higher than 90%. In this scenario, advanced therapies based on gene therapies are emerging, thanks to a better understanding of tumour architecture and cancer cell alterations. We have demonstrated the efficacy of an innovative approach for pancreatic cancer based on mesenchymal stromal cells (MSC) genetically engineered to produce TNF-related Apoptosis Inducing Ligand (TRAIL). Here we investigated the combination of this MSC-based approach with the administration of a paclitaxel (PTX)-based chemotherapy to improve the potential of the treatment, also accounting for a possible resistance onset. Methods: Starting from the BXPC3 cell line, we generated and profiled a TRAIL-resistant model of pancreatic cancer, testing the impact of the combined treatment in vitro with specific cytotoxicity and metabolic assays. We then challenged the rationale in a subcutaneous mouse model of pancreatic cancer, assessing its effect on tumour size accounting stromal and parenchymal organization. Results: PTX was able to restore pancreatic cancer sensitivity to MSC-delivered TRAIL by reverting its pro-survival gene expression profile. The two compounds cooperate both in vitro and in vivo and the combined treatment resulted in an improved cytotoxicity on tumour cells. Conclusion: In summary, this study uncovers the potential of a combinatory approach between MSC-delivered TRAIL and PTX, supporting the combination of cell-based products and conventional chemotherapeutics as a tool to improve the efficacy of the treatments, also addressing possible mechanisms of resistance.


Assuntos
Adenocarcinoma/terapia , Antineoplásicos/administração & dosagem , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Combinada/métodos , Paclitaxel/administração & dosagem , Neoplasias Pancreáticas/terapia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos Nus , Modelos Teóricos , Transplante de Neoplasias , Transplante Heterólogo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...