Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Remote Sens (Basel) ; 14(18): 4531, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36186714

RESUMO

Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop's phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m-2, CCC: R2 = 0.80, RMSE = 0.27 g m-2 and VWC: R2 = 0.75, RMSE = 416 g m-2. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.

2.
Agronomy (Basel) ; 12(8): 1884, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36081889

RESUMO

The production of onions bulbs (Allium cepa L.) requires a high amount of nitrogen. According to the demand of sustainable agriculture, the information-development and communication technologies allow for improving the efficiency of nitrogen fertilization. In the south of the province of Buenos Aires, Argentina, between 8000 and 10,000 hectares per year-1 are cultivated in the districts of Villarino and Patagones. This work aimed to analyze the relationship of biophysical variables: leaf area index (LAI), canopy chlorophyll content (CCC), and canopy cover factor (fCOVER), with the nitrogen fertilization of an intermediate cycle onion crop and its effects on yield. A field trial study with different doses of granulated urea and granulated urea was carried out, where biophysical characteristics were evaluated in the field and in Sentinel-2 satellite observations. Field data correlated well with satellite data, with an R2 of 0.91, 0.96, and 0.85 for LAI, fCOVER, and CCC, respectively. The application of nitrogen in all its doses produced significantly higher yields than the control. The LAI and CCC variables had a positive correlation with yield in the months of November and December. A significant difference was observed between U250 (62 Mg ha-1) and the other treatments. The U500 dose led to a yield increase of 27% compared to U250, while the difference between U750 and U500 was 6%.

3.
Remote Sens (Basel) ; 14(22): 5867, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36644377

RESUMO

Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition's geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R C V 2 = 0.67 and RMSE CV = 0.88 m2 m-2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloudprone agri-environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA