Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 22257, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564413

RESUMO

The development of the vertebral column has been studied extensively in modern amniotes, yet many aspects of its evolutionary history remain enigmatic. Here we expand the existing data on four major vertebral developmental patterns in amniotes based on exceptionally well-preserved specimens of the early Permian mesosaurid reptile Mesosaurus tenuidens: (i) centrum ossification, (ii) neural arch ossification, (iii) neural arch fusion, and (iv) neurocentral fusion. We retrace the evolutionary history of each pattern and reconstruct the ancestral condition in amniotes. Despite 300 million years of evolutionary history, vertebral development patterns show a surprisingly stability in amniotes since their common ancestor. We propose that this stability may be linked to conservatism in the constraints posed by underlying developmental processes across amniotes. We also point out that birds, mammals, and squamates each show specific trends deviating from the ancestral condition in amniotes, and that they remain rather unchanged within these lineages. The stability of their unique patterns demonstrates a certain homogeneity of vertebral developmental constraints within these lineages, which we suggest might be linked to their specific modes of regionalization. Our research provides a framework for the evolution of axial development in amniotes and a foundation for future studies.


Assuntos
Evolução Biológica , Osteogênese , Animais , Mamíferos , Répteis , Coluna Vertebral/anatomia & histologia
2.
PeerJ ; 10: e13866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132215

RESUMO

Mesosaurs are the first secondarily aquatic amniotes and one of the most enigmatic clades of reptiles from the early Permian. They have long puzzled paleontologists with their unique morphologies: possessing an elongated skull with thin needle-like teeth, a long neck, large webbed hindlimbs, banana-shaped pachyosteosclerotic ribs, and a long tail. Here, we look at a large dataset of morphometric measurements from 270 mesosaur specimens in collections around the world. These measurements characterize skull, tooth, and limb proportions and their variation with size. This data presents evidence of surprising ontogenetic changes in these animals as well as new insights into their taxonomy. Our results support the recent hypothesis that Mesosaurus tenuidens is the only valid species within Mesosauridae and suggest that "Stereosternum tumidum" and "Brazilosaurus sanpauloensis" represent immature stages or incomplete specimens of Mesosaurus by showing that all three species occupy an incomplete portion of the overall size range of mesosaurs. Under the single-species hypothesis, we highlight a number of ontogenetic trends: (1) a reduction in skull length accompanied by an elongation of the snout within the skull, (2) an elongation of teeth, (3) a reduction in hind limb length, and (4) a reduction in manus length. Concurrent with these changes, we hypothesize that mesosaurs went through a progressive ecological shift during their growth, with juveniles being more common in shallow water deposits, whereas large adults are more frequent in pelagic sediments. These parallel changes suggest that mesosaurs underwent a diet and lifestyle transition during ontogeny, from an active predatory lifestyle as juveniles to a more filter-feeding diet as adults. We propose that this change in lifestyle and environments may have been driven by the pursuit of different food sources, but a better understanding of the Irati Sea fauna will be necessary to obtain a more definitive answer to the question of young mesosaur diet.


Assuntos
Crânio , Dente , Animais , Crânio/anatomia & histologia , Répteis/anatomia & histologia , Cabeça , Dieta
3.
Sci Rep ; 10(1): 7184, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346053

RESUMO

The early Permian mesosaurs were the first amniotes to re-invade aquatic environments. One of their most controversial and puzzling features is their distinctive caudal anatomy, which has been suggested as a mechanism to facilitate caudal autotomy. Several researchers have described putative fracture planes in mesosaur caudal vertebrae - unossified regions in the middle of caudal vertebral centra - that in many extant squamates allow the tail to separate and the animal to escape predation. However, the reports of fracture planes in mesosaurs have never been closely investigated beyond preliminary descriptions, which has prompted scepticism. Here, using numerous vertebral series, histology, and X-ray computed tomography, we provide a detailed account of fracture planes in all three species of mesosaurs. Given the importance of the tail for propulsion in many other aquatic reptiles, the identification of fracture planes in mesosaurs has important implications for their aquatic locomotion. Despite mesosaurs apparently having the ability to autotomize their tail, it is unlikely that they actually made use of this behaviour due to a lack of predation pressure and no record of autotomized tails in articulated specimens. We suggest that the presence of fracture planes in mesosaurs is an evolutionary relic and could represent a synapomorphy for an as-yet undetermined terrestrial clade of Palaeozoic amniotes that includes the earliest radiation of secondarily aquatic tetrapods.


Assuntos
Dinossauros/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Animais , Cauda/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...