Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(3): e17227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018770

RESUMO

Many avian species endemic to Aotearoa New Zealand were driven to extinction or reduced to relict populations following successive waves of human arrival, due to hunting, habitat destruction and the introduction of mammalian predators. Among the affected species were the large flightless South Island takahe (Porphyrio hochstetteri) and the moho (North Island takahe; P. mantelli), with the latter rendered extinct and the former reduced to a single relictual population. Little is known about the evolutionary history of these species prior to their decline and/or extinction. Here we sequenced mitochondrial genomes from takahe and moho subfossils (12 takahe and 4 moho) and retrieved comparable sequence data from takahe museum skins (n = 5) and contemporary individuals (n = 17) to examine the phylogeny and recent evolutionary history of these species. Our analyses suggest that prehistoric takahe populations lacked deep phylogeographic structure, in contrast to moho, which exhibited significant spatial genetic structure, albeit based on limited sample sizes (n = 4). Temporal genetic comparisons show that takahe have lost much of their mitochondrial genetic diversity, likely due to a sudden demographic decline soon after human arrival (~750 years ago). Time-calibrated phylogenetic analyses strongly support a sister species relationship between takahe and moho, suggesting these flightless taxa diverged around 1.5 million years ago, following a single colonisation of New Zealand by a flighted Porphyrio ancestor approximately 4 million years ago. This study highlights the utility of palaeogenetic approaches for informing the conservation and systematic understanding of endangered species whose ranges have been severely restricted by anthropogenic impacts.


Assuntos
Genoma Mitocondrial , Animais , Evolução Biológica , Aves/genética , DNA Mitocondrial/genética , Mamíferos/genética , Nova Zelândia , Filogenia
2.
Mol Ecol Resour ; 23(1): 118-130, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35951485

RESUMO

Natural history collections worldwide contain a plethora of mollusc shells. Recent studies have detailed the sequencing of DNA extracted from shells up to thousands of years old and from various taphonomic and preservational contexts. However, previous approaches have largely addressed methodological rather than evolutionary research questions. Here, we report the generation of DNA sequence data from mollusc shells using such techniques, applied to Haliotis virginea Gmelin, 1791, a New Zealand abalone, in which morphological variation has led to the recognition of several forms and subspecies. We successfully recovered near-complete mitogenomes from 22 specimens including 12 dry-preserved shells up to 60 years old. We used a combination of palaeogenetic techniques that have not previously been applied to shell, including DNA extraction optimized for ultra-short fragments and hybridization-capture of single-stranded DNA libraries. Phylogenetic analyses revealed three major, well-supported clades comprising samples from: (1) The Three Kings Islands; (2) the Auckland, Chatham and Antipodes Islands; and (3) mainland New Zealand and Campbell Island. This phylogeographic structure does not correspond to the currently recognized forms. Critically, our nonreliance on freshly collected or ethanol-preserved samples enabled inclusion of topotypes of all recognized subspecies as well as additional difficult-to-sample populations. Broader application of these comparatively cost-effective and reliable methods to modern, historical, archaeological and palaeontological shell samples has the potential to revolutionize invertebrate genetic research.


Assuntos
Gastrópodes , Animais , Filogenia , Nova Zelândia , Filogeografia , Gastrópodes/genética , Moluscos/genética , DNA
3.
Heredity (Edinb) ; 130(1): 30-39, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463371

RESUMO

Glacial cycles play important roles in determining the phylogeographic structure of terrestrial species, however, relatively little is known about their impacts on the distribution of marine biota. This study utilised modern (n = 350) and ancient (n = 26) mitochondrial genomes from Australasian snapper (Chrysophrys auratus) sampled in New Zealand to assess their demographic and phylogeographic history. We also tested for changes in genetic diversity using the up to 750-year-old mitochondrial genomes from pre-European archaeological sites to assess the potential impacts of human exploitation. Nucleotide diversity and haplotype diversity was high (π = 0.005, h = 0.972). There was no significant change in nucleotide diversity over the last 750 years (p = 0.343), with no detectable loss of diversity as a result of indigenous and industrial-scale fishing activity. While there was no evidence for contemporary population structure (AMOVA, p = 0.764), phylogeographic analyses identified two distinct mitochondrial clades that diverged approximately 650,000 years ago during the mid-Pleistocene, suggesting the species experienced barriers to gene flow when sea levels dropped over 120 m during previous glacial maxima. An exponential population increase was also observed around 8000 years ago consistent with a post-glacial expansion, which was likely facilitated by increased ocean temperatures and rising sea levels. This study demonstrates that glacial cycles likely played an important role in the demographic history of C. auratus and adds to our growing understanding of how dynamic climatic changes have influenced the evolution of coastal marine species.


Assuntos
Genoma Mitocondrial , Perciformes , DNA Mitocondrial/genética , Variação Genética , Nucleotídeos , Filogenia , Filogeografia , Perciformes/genética , Animais
4.
Mol Ecol ; 32(11): 2964-2984, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306727

RESUMO

Methodological and technological improvements are continually revolutionizing the field of ancient DNA. Most ancient DNA extraction methods require the partial (or complete) destruction of finite museum specimens, which disproportionately impacts small or fragmentary subfossil remains, and future analyses. We present a minimally destructive ancient DNA extraction method optimized for small vertebrate remains. We applied this method to detect lost mainland genetic diversity in the large New Zealand diplodactylid gecko genus Hoplodactylus, which is presently restricted to predator-free island and mainland sanctuaries. We present the first mitochondrial genomes for New Zealand diplodactylid geckos, recovered from 19 modern, six historical/archival (1898-2011) and 16 Holocene Hoplodactylus duvaucelii sensu latu specimens, and one modern Woodworthia sp. specimen. No obvious damage was observed in post-extraction micro-computed tomography reconstructions. All "large gecko" specimens examined from extinct populations were found to be conspecific with extant Hoplodactylus species, suggesting their large relative size evolved only once in the New Zealand diplodactylid radiation. Phylogenetic analyses of Hoplodactylus samples recovered two genetically (and morphologically) distinct North and South Island clades, probably corresponding to distinct species. Finer phylogeographical structuring within Hoplodactylus spp. highlighted the impacts of Late Cenozoic biogeographical barriers, including the opening and closure of Pliocene marine straits, fluctuations in the size and suitability of glacial refugia, and eustatic sea-level change. Recent mainland extinction obscured these signals from the modern tissue-derived data. These results highlight the utility of minimally destructive DNA extraction in genomic analyses of less well studied small vertebrate taxa, and the conservation of natural history collections.


Assuntos
Genoma Mitocondrial , Lagartos , Animais , Filogeografia , Filogenia , Nova Zelândia , DNA Antigo , Genoma Mitocondrial/genética , Microtomografia por Raio-X , DNA/genética , Lagartos/genética , DNA Mitocondrial/genética
5.
Biol Lett ; 18(5): 20220013, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35538842

RESUMO

Cycles of glacial expansion and contraction throughout the Pleistocene drove increases and decreases, respectively, in the geographical range and population size of many animal species. Genetic data have revealed that during glacial maxima the distribution of many Eurasian animals was restricted to small refugial areas, from which species expanded to reoccupy parts of their former range as the climate warmed. It has been suggested that the extinct eastern moa (Emeus crassus)-a large, flightless bird from New Zealand-behaved analogously during glacial maxima, possibly surviving only in a restricted area of lowland habitat in the southern South Island of New Zealand during the Last Glacial Maximum (LGM). However, previous studies have lacked the power and geographical sampling to explicitly test this hypothesis using genetic data. Here we analyse 46 ancient mitochondrial genomes from Late Pleistocene and Holocene bones of the eastern moa from across their post-LGM distribution. Our results are consistent with a post-LGM increase in the population size and genetic diversity of eastern moa. We also demonstrate that genetic diversity was higher in eastern moa from the southern extent of their range, supporting the hypothesis that they expanded from a single glacial refugium following the LGM.


Assuntos
Variação Genética , Refúgio de Vida Selvagem , Animais , DNA Mitocondrial/genética , Ecossistema , Haplótipos , Filogenia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...