Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 858714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371143

RESUMO

White clover (Trifolium repens) is an allotetraploid pasture legume widely used in moist temperate climates, but its vulnerability to drought, grazing pressure and pests has restricted its wider use. A related species, Caucasian clover (Trifolium ambiguum), is a potential source of resistances to drought, cold, grazing pressure and pests that could potentially be transferred to white clover by interspecific hybridization. Although direct hybridization has been achieved with difficulty, the hybrids have not been easy to backcross for introgression breeding and no interspecific chromosome recombination has been demonstrated. The present work shows that interspecific recombination can be achieved by using Trifolium occidentale, one of the ancestral parents of T. repens, as a bridging species and that large white clover breeding populations carrying recombinant chromosomes can be generated. A 4x hybrid between T. ambiguum and T. occidentale was crossed with T. repens and then backcrossed for two generations. Five backcross hybrid plants with phenotypes appearing to combine traits from the parent species were selected for FISH-GISH analyses. Recombinant chromosome segments from T. ambiguum were found in all five plants, suggesting that recombination frequencies were significant and sufficient for introgression breeding. Despite early chromosome imbalances, the backcross populations were fertile and produced large numbers of seeds. These hybrids represent a major new resource for the breeding of novel resilient forms of white clover.

2.
BMC Plant Biol ; 22(1): 14, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979930

RESUMO

BACKGROUND: Unreduced gametes, a driving force in the widespread polyploidization and speciation of flowering plants, occur relatively frequently in interspecific or intergeneric hybrids. Studies of the mechanisms leading to 2n gamete formation, mainly in the wheat tribe Triticeae have shown that unreductional meiosis is often associated with chromosome asynapsis during the first meiotic division. The present study explored the mechanisms of meiotic nonreduction leading to functional unreduced gametes in an interspecific Trifolium (clover) hybrid with three sub-genomes from T. ambiguum and one sub-genome from T. occidentale. RESULTS: Unreductional meiosis leading to 2n gametes occurred when there was a high frequency of asynapsis during the first meiotic division. In this hybrid, approximately 39% of chromosomes were unpaired at metaphase I. Within the same cell at anaphase I, sister chromatids of univalents underwent precocious separation and formed laggard chromatids whereas paired chromosomes segregated without separation of sister chromatids as in normal meiosis. This asynchrony was frequently accompanied by incomplete or no movement of chromosomes toward the poles and restitution leading to unreduced chromosome constitutions. Reductional meiosis was restored in progeny where asynapsis frequencies were low. Two progeny plants with approximately 5 and 7% of unpaired chromosomes at metaphase I showed full restoration of reductional meiosis. CONCLUSIONS: The study revealed that formation of 2n gametes occurred when asynapsis (univalent) frequency at meiosis I was high, and that normal gamete production was restored in the next generation when asynapsis frequencies were low. Asynapsis-dependent 2n gamete formation, previously supported by evidence largely from wheat and its relatives and grasshopper, is also applicable to hybrids from the dicotyledonous plant genus Trifolium. The present results align well with those from these widely divergent organisms and strongly suggest common molecular mechanisms involved in unreduced gamete formation.


Assuntos
Células Germinativas Vegetais/crescimento & desenvolvimento , Meiose , Trifolium/crescimento & desenvolvimento , Células Germinativas Vegetais/metabolismo , Hibridização Genética , Trifolium/genética
3.
BMC Plant Biol ; 19(1): 438, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640569

RESUMO

BACKGROUND: Trifolium ambiguum occurs as a 2x, 4x, 6x polyploid series in W Asia. The 6x form is the most agronomically desirable, having strong rhizomatous spread and drought tolerance. These traits would be potentially very valuable if they could be transferred to white clover (T. repens) which is the most important agronomic clover species. However, to-date, no fertile interspecific hybrids with 6x T. ambiguum are available. Previously, 2x T. occidentale from W Europe has produced synthetic fertile hybrids with both 2x and 4x T. ambiguum and these were inter-fertile with white clover. Here we ask whether 2x T. occidentale can form fertile hybrids with 6x T. ambiguum and act as a genetic bridge to white clover and bring these species together as part of a common gene pool. RESULTS: Ten verified F1 (6x T. ambiguum x 2x T. occidentale) hybrids were produced by embryo rescue and seven were studied further. All four investigated for chromosome number were 2n = 4x = 32 and FISH confirmed the expected 21 T. ambiguum and 8 T. occidentale chromosomes. Hybrid fertility was extremely low but 2n female gametes functioned with white clover pollen to produce seeds. Derived plants were confirmed using FISH and were successfully backcrossed to white clover to produce partially fertile breeding populations. CONCLUSIONS: Although T. occidentale and 6x T. ambiguum are widely separated by geography and ecological adaptation they have maintained enough genomic affinity to produce partially fertile hybrids. Inter-fertility of the hybrids with allotetraploid T. repens showed that T. occidentale can provide a genetic bridge between 6x T. ambiguum and white clover to produce plants with new phenotypes combining the traits of all three species. Use of this information should enable potentially valuable stress tolerance traits from 6x T. ambiguum to be used in white clover breeding for the first time.


Assuntos
Genoma de Planta/genética , Trifolium/genética , Genótipo , Hibridização Genética , Fenótipo , Melhoramento Vegetal , Poliploidia , Sementes/genética
4.
New Phytol ; 205(2): 882-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25329638

RESUMO

Anthocyanin pigments accumulate to form spatially restricted patterns in plants, particularly in flowers, but also occur in vegetative tissues. Spatially restricted anthocyanin leaf markings are poorly characterised in plants, but are common in forage legumes. We hypothesised that the molecular basis for anthocyanin leaf markings in Trifolium spp. is due to the activity of a family of R2R3-MYB genes. R2R3-MYB genes were identified that are associated with the two classic pigmentation loci in T. repens. The R locus patterns 'red leaf', 'red midrib' and 'red fleck' are conditioned by a single MYB gene, RED LEAF. The 'diffuse red leaf' trait is regulated by the RED LEAF DIFFUSE MYB gene. The V locus was identified through mapping two V-linked traits, 'V-broken yellow' (Vby) and 'red leaflet' (Vrl). Two highly similar R2R3-MYB genes, RED V-a and RED V-b, mapped to the V locus and co-segregated with the RED V pigmentation pattern. Functional characterisation of RED LEAF and RED V was performed, confirming their function as anthocyanin regulators and identifying a C-terminal region necessary for transactivation. The mechanisms responsible for generating anthocyanin leaf markings in T. repens provide a valuable system to compare with mechanisms that regulate complex floral pigmentation.


Assuntos
Antocianinas/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Trifolium/genética , Trifolium/metabolismo , Antocianinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes myb , Dados de Sequência Molecular , Família Multigênica , Filogenia , Pigmentação/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética
5.
BMC Plant Biol ; 12: 55, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22530692

RESUMO

BACKGROUND: White clover (Trifolium repens) is a ubiquitous weed of the temperate world that through use of improved cultivars has also become the most important legume of grazed pastures world-wide. It has long been suspected to be allotetraploid, but the diploid ancestral species have remained elusive. Putative diploid ancestors were indicated by DNA sequence phylogeny to be T. pallescens and T. occidentale. Here, we use further DNA evidence as well as a combination of molecular cytogenetics (FISH and GISH) and experimental hybridization to test the hypothesis that white clover originated as a hybrid between T. pallescens and T. occidentale. RESULTS: T. pallescens plants were identified with chloroplast trnL intron DNA sequences identical to those of white clover. Similarly, T. occidentale plants with nuclear ITS sequences identical to white clover were also identified. Reciprocal GISH experiments, alternately using labeled genomic DNA probes from each of the putative ancestral species on the same white clover cells, showed that half of the chromosomes hybridized with each probe. F1 hybrids were generated by embryo rescue and these showed strong interspecific chromosome pairing and produced a significant frequency of unreduced gametes, indicating the likely mode of polyploidization. The F1 hybrids are inter-fertile with white clover and function as synthetic white clovers, a valuable new resource for the re-incorporation of ancestral genomes into modern white clover for future plant breeding. CONCLUSIONS: Evidence from DNA sequence analyses, molecular cytogenetics, interspecific hybridization and breeding experiments supports the hypothesis that a diploid alpine species (T. pallescens) hybridized with a diploid coastal species (T. occidentale) to generate tetraploid T. repens. The coming together of these two narrowly adapted species (one alpine and the other maritime), along with allotetraploidy, has led to a transgressive hybrid with a broad adaptive range.


Assuntos
Quimera/genética , Evolução Molecular , Genoma de Planta/genética , Trifolium/genética , Adaptação Biológica/genética , Sequência de Bases , Cruzamento , Quimera/classificação , Pareamento Cromossômico , Cromossomos de Plantas/genética , Análise Citogenética , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Diploide , Genótipo , Hibridização Genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Pólen/genética , Sementes/genética , Análise de Sequência de DNA , Tetraploidia , Trifolium/classificação
6.
Ann Bot ; 108(7): 1269-77, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21880661

RESUMO

BACKGROUND AND AIMS: DNA sequence similarities and hybridization patterns in Trifolium (clovers) section Trifoliastrum suggest that rapid radiation from a common ancestral source led to this complex of diverse species distributed across Europe, western Asia and North Africa. Two of the most geographically and ecologically divergent of these species are the rhizomatous T. ambiguum from high altitudes in eastern Europe and western Asia and the stoloniferous T. occidentale from sea level in western Europe. Attempts were made to hybridize these species to ascertain whether, despite this separation, gene flow could be achieved, indicating the retention of the genetic factors necessary for hybridization. METHODS: Three F(1) hybrids formed after embryo rescue were described, characterized by conventional and molecular cytogenetics, subjected to fertility tests and progeny generations were developed. RESULTS AND CONCLUSIONS: Partially fertile hybrids between Trifolium ambiguum and T. occidentale were obtained for the first time. The F(1) hybrids produced seeds after open-pollination, and also produced triploid progeny in backcrosses to T. occidentale from the functioning of unreduced gametes in the hybrids. These plants were fertile and produced progeny with T. occidentale and with T. repens. Meiotic chromosome pairing in the F(1) showed six to eight bivalents per pollen mother cell, indicating pairing between the parental genomes. A chromosome-doubled form of one hybrid, produced using colchicine, showed some multivalents, indicative of interspecific chromosome pairing. The hybrid plants were robust and combined phenotypic characteristics of both species, having stolons, thick roots and a few rhizomes. Results show that despite separation by the entire breadth of Europe, the speciation process is incomplete, and these taxa have partially retained most of the genetic compatibilities needed for hybridization (possibly except for endosperm development, which was not tested). The fertile progeny populations could lead to new clover breeding strategies based on new hybrid forms.


Assuntos
Quimera/genética , Diploide , Trifolium/genética , Pareamento Cromossômico , Europa (Continente) , Fluxo Gênico , Transferência Genética Horizontal , Especiação Genética , Genoma de Planta , Hibridização Genética , Triploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...