Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 31(8): 1701-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21300780

RESUMO

Transcriptome profiling studies have recently uncovered a large number of noncoding RNA transcripts (ncRNAs) in eukaryotic organisms, and there is growing interest in their role in the cell. For example, in haploid Saccharomyces cerevisiae cells, the expression of an overlapping antisense ncRNA, referred to here as RME2 (Regulator of Meiosis 2), prevents IME4 expression. In diploid cells, the a1-α2 complex represses the transcription of RME2, allowing IME4 to be induced during meiosis. In this study we show that antisense transcription across the IME4 promoter region does not block transcription factors from binding and is not required for repression. Mutational analyses found that sequences within the IME4 open reading frame (ORF) are required for the repression mediated by RME2 transcription. These results support a model where transcription of RME2 blocks the elongation of the full-length IME4 transcript but not its initiation. We have found that another antisense transcript, called RME3, represses ZIP2 in a cell-type-specific manner. These results suggest that regulated antisense transcription may be a widespread mechanism for the control of gene expression and may account for the roles of some of the previously uncharacterized ncRNAs in yeast.


Assuntos
DNA Antissenso/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Transcrição Gênica , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell Biol ; 27(7): 2466-75, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17242192

RESUMO

Sir2 and Hst1 are NAD(+)-dependent histone deacetylases of budding yeast that are related by strong sequence similarity. Nevertheless, the two proteins promote two mechanistically distinct forms of gene repression. Hst1 interacts with Rfm1 and Sum1 to repress the transcription of specific middle-sporulation genes. Sir2 interacts with Sir3 and Sir4 to silence genes contained within the silent-mating-type loci and telomere chromosomal regions. To identify the determinants of gene-specific versus regional repression, we created a series of Hst1::Sir2 hybrids. Our analysis yielded two dual-specificity chimeras that were able to perform both regional and gene-specific repression. Regional silencing by the chimeras required Sir3 and Sir4, whereas gene-specific repression required Rfm1 and Sum1. Our findings demonstrate that the nonconserved N-terminal region and two amino acids within the enzymatic core domain account for cofactor specificity and proper targeting of these proteins. These results suggest that the differences in the silencing and repression functions of Sir2 and Hst1 may not be due to differences in enzymatic activities of the proteins but rather may be the result of distinct cofactor specificities.


Assuntos
Inativação Gênica , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuínas/metabolismo , Sequência de Aminoácidos , Coenzimas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/genética , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2 , Sirtuínas/genética
3.
Eukaryot Cell ; 4(11): 1808-19, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16278448

RESUMO

The yeast Mcm1 protein is a member of the MADS box family of transcription factors that interacts with several cofactors to differentially regulate genes involved in cell-type determination, mating, cell cycle control and arginine metabolism. Residues 18 to 96 of the protein, which form the core DNA-binding domain of Mcm1, are sufficient to carry out many Mcm1-dependent functions. However, deletion of residues 2 to 17, which form the nonessential N-terminal (NT) arm, confers a salt-sensitive phenotype, suggesting that the NT arm is required for the activation of salt response genes. We used a strategy that combined information from the mutational analysis of the Mcm1-binding site with microarray expression data under salt stress conditions to identify a new subset of Mcm1-regulated genes. Northern blot analysis showed that the transcript levels of several genes encoding associated with the cell wall, especially YGP1, decrease significantly upon deletion of the Mcm1 NT arm. Deletion of the Mcm1 NT arm results in a calcofluor white-sensitive phenotype, which is often associated with defects in transcription of cell wall genes. In addition, the deletion makes cells sensitive to CaCl2 and alkaline pH. We found that the defect caused by removal of the NT arm is not due to changes in Mcm1 protein level, stability, DNA-binding affinity, or DNA bending. This suggests that residues 2 to 17 of Mcm1 may be involved in recruiting a cofactor to the promoters of these genes to activate transcription.


Assuntos
Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , DNA/química , DNA/metabolismo , Perfilação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Domínio MADS , Proteína 1 de Manutenção de Minicromossomo , Modelos Moleculares , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
4.
Nucleic Acids Res ; 32(22): 6469-78, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15598821

RESUMO

The HO gene in Saccharomyces cerevisiae is regulated by a large and complex promoter that is similar to promoters in higher order eukaryotes. Within this promoter are 10 potential binding sites for the a1-alpha2 heterodimer, which represses HO and other haploid-specific genes in diploid yeast cells. We have determined that a1-alpha2 binds to these sites with differing affinity, and that while certain strong-affinity sites are crucial for repression of HO, some of the weak-affinity sites are dispensable. However, these weak-affinity a1-alpha2-binding sites are strongly conserved in related yeast species and have a role in maintaining repression upon the loss of strong-affinity sites. We found that these weak sites are sufficient for a1-alpha2 to partially repress HO and recruit the Tup1-Cyc8 (Tup1-Ssn6) co-repressor complex to the HO promoter. We demonstrate that the Swi5 activator protein is not bound to URS1 in diploid cells, suggesting that recruitment of the Tup1-Cyc8 complex by a1-alpha2 prevents DNA binding by activator proteins resulting in repression of HO.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Bases , Sítios de Ligação , Ciclo Celular , Imunoprecipitação da Cromatina , Inativação Gênica , Proteínas Nucleares/metabolismo , Filogenia , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/metabolismo
5.
Yeast ; 21(15): 1241-52, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15543521

RESUMO

Sporulation in the yeast Saccharomyces cerevisiae is a complex and tightly regulated pathway that involves the induction of a large number of genes. We have identified MRPS17 in a cDNA library enriched for sporulation-specific genes. Homology searches show that the first one-third of Mrps17 has strong sequence similarity to bacterial S17 proteins, suggesting that Mrps17 is a potential mitochondrial ribosomal protein. This is further supported by the fact that mrps17Delta cells are respiratory-deficient and that a Mrps17-GFP fusion localizes to the mitochondria. We have confirmed by Northern blot analysis that both MRPS17 and MRPL37 are strongly induced during the middle stages of sporulation and that this induction is dependent on the presence of a middle sporulation element (MSE) in the promoters of these genes. Interestingly, we found that Mrps17 and Mrpl37, but not other mitochondrial ribosomal proteins, accumulate during the middle stages of sporulation. These results suggest that Mrps17 and Mrpl37 may have additional meiosis-specific roles.


Assuntos
Meiose/fisiologia , Proteínas Mitocondriais/fisiologia , Proteínas Ribossômicas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sequência de Aminoácidos , Northern Blotting , Proteínas de Fluorescência Verde , Microscopia Confocal , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Mutagênese , RNA Fúngico/química , RNA Fúngico/genética , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Esporos Fúngicos/fisiologia
6.
BMC Genomics ; 5(1): 59, 2004 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15331021

RESUMO

BACKGROUND: The analysis of gene expression using DNA microarrays provides genome wide profiles of the genes controlled by the presence or absence of a specific transcription factor. However, the question arises of whether a change in the level of transcription of a specific gene is caused by the transcription factor acting directly at the promoter of the gene or through regulation of other transcription factors working at the promoter. RESULTS: To address this problem we have devised a computational method that combines microarray expression and site preference data. We have tested this approach by identifying functional targets of the a1-alpha2 complex, which represses haploid-specific genes in the yeast Saccharomyces cerevisiae. Our analysis identified many known or suspected haploid-specific genes that are direct targets of the a1-alpha2 complex, as well as a number of previously uncharacterized targets. We were also able to identify a number of haploid-specific genes which do not appear to be direct targets of the a1-alpha2 complex, as well as a1-alpha2 target sites that do not repress transcription of nearby genes. Our method has a much lower false positive rate when compared to some of the conventional bioinformatic approaches. CONCLUSIONS: These findings show advantages of combining these two forms of data to investigate the mechanism of co-regulation of specific sets of genes.


Assuntos
Perfilação da Expressão Gênica/estatística & dados numéricos , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Algoritmos , Sítios de Ligação/genética , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Análise Mutacional de DNA/estatística & dados numéricos , Diploide , Haploidia , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Valor Preditivo dos Testes , Regiões Promotoras Genéticas/genética , Software
7.
Nucleic Acids Res ; 32(9): 2947-56, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15161958

RESUMO

The Ndt80 protein of the yeast Saccharomyces cerevisiae is the founding member of a new sub-family of proteins in the Ig-fold superfamily of transcription factors. The crystal structure of Ndt80 bound to DNA shows that it makes contacts through several loops on one side of the protein that connect beta-strands which form the beta-sandwich fold common to proteins in this superfamily. However, the DNA-binding domain of Ndt80 is considerably larger than many other members of the Ig-fold superfamily and it appears to make a larger number of contacts with the DNA than these proteins. To determine the contribution of each of these contacts and to examine if the mechanism of Ndt80 DNA binding was similar to other members of the Ig-fold superfamily, amino acid substitutions were introduced at each residue that contacts the DNA and assayed for their effect on Ndt80 activity. Many of the mutations caused significant decreases in DNA-binding affinity and transcriptional activation. Several of these are in residues that are not found in other sub-families of Ig-fold proteins. These additional contacts are likely responsible for Ndt80's ability to bind DNA as a monomer while most other members require additional domains or cofactors to recognize their sites.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/genética , DNA/metabolismo , Imunoglobulinas/química , Elementos de Resposta/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sequência de Bases , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Especificidade por Substrato , Propriedades de Superfície
8.
Nucleic Acids Res ; 32(8): 2298-305, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15118075

RESUMO

The yeast Mcm1 protein is a founding member of the MADS-box family of transcription factors that is involved in the regulation of diverse sets of genes through interactions with distinct cofactor proteins. Mcm1 interacts with the Matalpha1 protein to activate the expression of the alpha-cell type-specific genes. To understand the requirement of the cofactor alpha1 for Mcm1-alpha1-dependent transcriptional activation we analyzed the recruitment of Mcm1 to the promoters of alpha-specific genes in vivo and found that Mcm1 is able to bind to the promoters of alpha-specific genes in the absence of alpha1. This suggests the function of alpha1 is more complex than simply recruiting Mcm1. Several MADS-box transcription factors, including Mcm1, induce DNA bending and there is evidence the proper bend may be required for transcriptional activation. We analyzed Mcm1-dependent bending of a Mcm1-alpha1 binding site in the presence and absence of alpha1 and found that Mcm1 alone shows a reduced DNA-bend at this site compared with other Mcm1 binding sites. However, the addition of alpha1 markedly increases the DNA-bend and we present evidence this bend is required for full transcriptional activation. These results support a model in which proper DNA-bending by the Mcm1-alpha1 complex is required for transcriptional activation.


Assuntos
DNA Fúngico/química , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Ativação Transcricional , Sequência de Bases , Sítios de Ligação , Sequência Consenso , DNA Fúngico/metabolismo , Substâncias Macromoleculares , Proteína 1 de Manutenção de Minicromossomo/química , Modelos Moleculares , Conformação de Ácido Nucleico , Elementos de Resposta
9.
Eukaryot Cell ; 2(5): 1061-8, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14555489

RESUMO

Sfp1, an unusual zinc finger protein, was previously identified as a gene that, when overexpressed, imparted a nuclear localization defect. sfp1 cells have a reduced size and a slow growth phenotype. In this study we show that SFP1 plays a role in ribosome biogenesis. An sfp1 strain is hypersensitive to drugs that inhibit translational machinery. sfp1 strains also have defects in global translation as well as defects in rRNA processing and 60S ribosomal subunit export. Microarray analysis has previously shown that ectopically expressed SFP1 induces the transcription of a large subset of genes involved in ribosome biogenesis. Many of these induced genes contain conserved promoter elements (RRPE and PAC). Our results show that activation of transcription from a reporter construct containing two RRPE sites flanking a single PAC element is SFP1 dependent. However, we have been unable to detect direct binding of the protein to these elements. This suggests that regulation of genes containing RRPEs is dependent upon Sfp1 but that Sfp1 may not directly bind to these conserved promoter elements; rather, activation may occur through an indirect mechanism.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Higromicina B/análogos & derivados , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Cinamatos/farmacologia , Cicloeximida/farmacologia , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Higromicina B/farmacologia , Mutagênese Sítio-Dirigida , Paromomicina/farmacologia , Polirribossomos/metabolismo , Regiões Promotoras Genéticas/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Precursores de RNA/metabolismo , RNA Ribossômico/análise , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Dedos de Zinco/genética , Dedos de Zinco/fisiologia
10.
Genetics ; 164(4): 1333-44, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12930743

RESUMO

In the yeast Saccharomyces cerevisiae, diploid strains carrying homozygous hta1-htb1Delta mutations express histone H2A-H2B dimers at a lower level than do wild-type cells. Although this mutation has only minor effects on mitotic growth, it causes an arrest in sporulation prior to the first meiotic division. In this report, we show that the hta1-htb1Delta mutant exhibits reduced expression of early and middle-sporulation-specific genes and that the meiotic arrest of the hta1-htb1Delta mutant can be partially bypassed by overexpression of IME1. Additionally, deletions of BUB2 or BFA1, components of one branch of the spindle checkpoint pathway, bypass the meiotic arrest. Mutations in the other branch of the pathway or in the pachytene checkpoint are unable to suppress the meiotic block. These observations indicate that depletion of the H2A-H2B dimer blocks sporulation by at least two mechanisms: disruption of the expression of meiotic regulatory genes and activation of the spindle checkpoint. Our results show that the failure to progress through the meiotic pathway is not the result of global chromosomal alterations but that specific aspects of meiosis are sensitive to depletion of the H2A-H2B dimer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Meiose , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Histonas/classificação , Histonas/genética , Homozigoto , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Cell Biol ; 23(14): 4814-25, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12832469

RESUMO

A key transition in meiosis is the exit from prophase and entry into the nuclear divisions, which in the yeast Saccharomyces cerevisiae depends upon induction of the middle sporulation genes. Ndt80 is the primary transcriptional activator of the middle sporulation genes and binds to a DNA sequence element termed the middle sporulation element (MSE). Sum1 is a transcriptional repressor that binds to MSEs and represses middle sporulation genes during mitosis and early sporulation. We demonstrate that Sum1 and Ndt80 have overlapping yet distinct sequence requirements for binding to and acting at variant MSEs. Whole-genome expression analysis identified a subset of middle sporulation genes that was derepressed in a sum1 mutant. A comparison of the MSEs in the Sum1-repressible promoters and MSEs from other middle sporulation genes revealed that there are distinct classes of MSEs. We show that Sum1 and Ndt80 compete for binding to MSEs and that small changes in the sequence of an MSE can yield large differences in which protein is bound. Our results provide a mechanism for differentially regulating the expression of middle sporulation genes through the competition between the Sum1 repressor and the Ndt80 activator.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Ligação Competitiva/fisiologia , Proteínas de Ligação a DNA/genética , Meiose/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
12.
Mol Cell Biol ; 23(6): 2009-16, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12612074

RESUMO

Transcriptional repression is often correlated with the alteration of chromatin structure through modifications of the nucleosomes in the promoter region, such as by deacetylation of the N-terminal histone tails. This is presumed to make the promoter region inaccessible to other regulatory factors and the general transcription machinery. To accomplish this, histone deacetylases are recruited to specific promoters via DNA-binding proteins and tethering factors. We have previously reported the requirement for the NAD(+)-dependent histone deacetylase Hst1 and the DNA-binding protein Sum1 for vegetative repression of many middle sporulation genes in Saccharomyces cerevisiae. Here we report the identification of a novel tethering factor, Rfm1, that is required for Hst1-mediated repression. Rfm1 interacts with both Sum1 and Hst1 and is required for the Sum1-Hst1 interaction. DNA microarray and Northern blot analyses showed that Rfm1 is required for repression of the same subset of Sum1-repressed genes that require Hst1. These results suggest that Rfm1 is a specificity factor that targets the Hst1 deacetylase to a subset of Sum1-regulated genes.


Assuntos
Proteínas de Ligação a DNA/isolamento & purificação , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histona Desacetilases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Sirtuínas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Genes Fúngicos , Substâncias Macromoleculares , Modelos Genéticos , Fases de Leitura Aberta , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Esporos Fúngicos
13.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 12): 2127-30, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12454476

RESUMO

The Ndt80 protein is a transcriptional activator that plays a key role in the progression of the meiotic divisions in the yeast Saccharomyces cerevisiae. Ndt80 is strongly induced during the middle stages of the sporulation pathway and binds specifically to a promoter element called the MSE to activate transcription of genes required for the meiotic divisions. Here, the preliminary structural and functional studies to characterize the DNA-binding activity of this protein are reported. Through deletion analysis and limited proteolysis studies of Ndt80, a novel 32 kDa DNA-binding domain that is sufficient for DNA-binding in vitro has been defined. Crystals of the DNA-binding domain of Ndt80 in two distinct lattices have been obtained, for which diffraction data extend to 2.3 A resolution.


Assuntos
Proteínas de Ligação a DNA/química , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Hidrólise , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
14.
Proc Natl Acad Sci U S A ; 99(22): 14041-6, 2002 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-12384578

RESUMO

Ndt80 is a transcriptional activator required for meiosis in the yeast Saccharomyces cerevisiae. Here, we report the crystal structure at 2.3 A resolution of the DNA-binding domain of Ndt80 experimentally phased by using the anomalous and isomorphous signal from a single ordered Se atom per molecule of 272-aa residues. The structure reveals a single approximately 32-kDa domain with a distinct fold comprising a beta-sandwich core elaborated with seven additional beta-sheets and three short alpha-helices. Inspired by the structure, we have performed a mutational analysis and defined a DNA-binding motif in this domain. The DNA-binding domain of Ndt80 is homologous to a number of proteins from higher eukaryotes, and the residues that we have shown are required for DNA binding by Ndt80 are highly conserved among this group of proteins. These results suggest that Ndt80 is the defining member of a previously uncharacterized family of transcription factors, including the human protein (C11orf9), which has been shown to be highly expressed in invasive or metastatic tumor cells.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Fúngicas/química , Meiose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Transativadores/química , Fatores de Transcrição , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalização , Cristalografia por Raios X , DNA/química , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Transativadores/genética
15.
Structure ; 10(7): 961-71, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12121651

RESUMO

Triply mutated MATalpha2 protein, alpha2-3A, in which all three major groove-contacting residues are mutated to alanine, is defective in binding DNA alone or in complex with Mcm1 yet binds with MATa1 with near wild-type affinity and specificity. To gain insight into this unexpected behavior, we determined the crystal structure of the a1/alpha2-3A/DNA complex. The structure shows that the triple mutation causes a collapse of the alpha2-3A/DNA interface that results in a reorganized set of alpha2-3A/DNA contacts, thereby enabling the mutant protein to recognize the wild-type DNA sequence. Isothermal titration calorimetry measurements reveal that a much more favorable entropic component stabilizes the a1/alpha2-3A/DNA complex than the alpha2-3A/DNA complex. The combined structural and thermodynamic studies provide an explanation of how partner proteins influence the sequence specificity of a DNA binding protein.


Assuntos
Alanina/química , DNA/química , Proteínas de Homeodomínio/química , Proteínas Repressoras/química , Calorimetria , Cristalografia por Raios X , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Conformação Proteica , Termodinâmica
16.
Mol Cell Biol ; 22(16): 5741-52, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12138185

RESUMO

Arg80 and Mcm1, two members of the MADS box family of DNA-binding proteins, regulate the metabolism of arginine in association with Arg81, the arginine sensor. In spite of the high degree of sequence conservation between the MADS box domains of the Arg80 and Mcm1 proteins (56 of 81 amino acids), these domains are not interchangeable. To determine which amino acids define the specificity of Arg80, we swapped the amino acids in each secondary-structure element of the Arg80 MADS box domain with the corresponding amino acids of Mcm1 and assayed the ability of these chimeras to regulate arginine-metabolic genes in place of the wild-type Arg80. Also performed was the converse experiment in which each variant residue in the Mcm1 MADS box domain was swapped with the corresponding residue of Arg80 in the context of an Arg80-Mcm1 fusion protein. We show that multiple regions of Arg80 are important for its function. Interestingly, the residues which have important roles in determining the specificity of Arg80 are not those which could contact the DNA but are residues that are likely to be involved in protein interactions. Many of these residues are clustered on one side of the protein, which could serve as an interface for interaction with Arg81 or Mcm1. This interface is distinct from the region used by the Mcm1 and human serum response factor MADS box proteins to interact with their cofactors. It is possible that this alternative interface is used by other MADS box proteins to interact with their cofactors.


Assuntos
Arginina/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Teste de Complementação Genética , Humanos , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
17.
Mol Cell Biol ; 22(13): 4607-21, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12052870

RESUMO

The yeast Mcm1 protein is a member of the MADS box family of transcriptional regulatory factors, a class of DNA-binding proteins that control numerous cellular and developmental processes in yeast, Drosophila melanogaster, plants, and mammals. Although these proteins bind DNA on their own, they often combine with different cofactors to bind with increased affinity and specificity to their target sites. To understand how this class of proteins functions, we have made a series of alanine substitutions in the MADS box domain of Mcm1 and examined the effects of these mutations in combination with its cofactors that regulate mating in yeast. Our results indicate which residues of Mcm1 are essential for viability and transcriptional regulation with its cofactors in vivo. Most of the mutations in Mcm1 that are lethal affect DNA-binding affinity. Interestingly, the lethality of many of these mutations can be suppressed if the MCM1 gene is expressed from a high-copy-number plasmid. Although many of the alanine substitutions affect the ability of Mcm1 to activate transcription alone or in combination with the alpha 1 and Ste12 cofactors, most mutations have little or no effect on Mcm1-mediated repression in combination with the alpha 2 cofactor. Even nonconservative amino acid substitutions of residues in Mcm1 that directly contact alpha 2 do not significantly affect repression. These results suggest that within the same region of the Mcm1 MADS box domain, there are different requirements for interaction with alpha 2 than for interaction with either alpha1 or Ste12. Our results suggest how a small domain, the MADS box, interacts with multiple cofactors to achieve specificity in transcriptional regulation and how subtle differences in the sequences of different MADS box proteins can influence the interactions with specific cofactors while not affecting the interactions with common cofactors.


Assuntos
Proteína 1 de Manutenção de Minicromossomo/metabolismo , Leveduras/fisiologia , Alanina/genética , Sequência de Bases , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Letais , Proteínas de Homeodomínio/metabolismo , Proteína 1 de Manutenção de Minicromossomo/química , Proteína 1 de Manutenção de Minicromossomo/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Proteínas Repressoras/metabolismo , Reprodução , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
18.
J Mol Biol ; 316(2): 247-56, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11851335

RESUMO

We have engineered enhanced DNA-binding function into the a1 homeodomain by making changes in a loop distant from the DNA-binding surface. Comparison of the free and bound a1 structures suggested a mechanism linking van der Waals stacking changes in this loop to the ordering of a final turn in the DNA-binding helix of a1. Inspection of the protein sequence revealed striking differences in amino acid identity at positions 24 and 25 compared to related homeodomain proteins. These positions lie in the loop connecting helix-1 and helix-2, which is involved in heterodimerization with the alpha 2 protein. A series of single and double amino acid substitutions (a1-Q24R, a1-S25Y, a1-S25F and a1-Q24R/S25Y) were engineered, expressed and purified for biochemical and biophysical study. Calorimetric measurements and HSQC NMR spectra confirm that the engineered variants are folded and are equally or more stable than the wild-type a1 homeodomain. NMR analysis of a1-Q24R/S25Y demonstrates that the DNA recognition helix (helix-3) is extended by at least one turn as a result of the changes in the loop connecting helix-1 and helix-2. As shown by EMSA, the engineered variants bind DNA with enhanced affinity (16-fold) in the absence of the alpha 2 cofactor and the variant alpha 2/a1 heterodimers bind cognate DNA with specificity and affinity reflective of the enhanced a1 binding affinity. Importantly, in vivo assays demonstrate that the a1-Q24R/S25Y protein binds with fivefold greater affinity than wild-type a1 and is able to partially suppress defects in repression by alpha 2 mutants. As a result of these studies, we show how subtle differences in residues at a surface distant from the functional site code for a conformational switch that allows the a1 homeodomain to become active in DNA binding in association with its cofactor alpha 2.


Assuntos
DNA/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Engenharia de Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Calorimetria , Cromatina/genética , Cromatina/metabolismo , DNA/genética , Dimerização , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Testes de Precipitina , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...