Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 328: 121690, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220320

RESUMO

World-wide, pathogenic fungi such as Botrytis cinerea cause tremendous yield losses in terms of food production and post-harvest food decay. Many fungi produce inulin-type oligosaccharides (IOSs) from inulin through endo-inulinases which typically show a two domain structure. B.cinerea lacks a two domain endo-inulinase but contains a three domain structure instead. Genome mining revealed three and four domain (d4) enzymes in the fungal kingdom. Here, three and two domain enzymes were compared in their capacity to produce IOSs from inulin. Hill kinetics were observed in three domain enzymes as compared to Michaelis-Menten kinetics in two domain enzymes, suggesting that the N-terminal extension functions as a carbohydrate binding module. Analysis of the IOS product profiles generated from purified GF6, GF12, GF16 and GF18 inulins and extensive sugar docking approaches led to enhanced insights in the active site functioning, revealing subtle differences between the endo-inulinases from Aspergillus niger and B. cinerea. Improved insights in structure-function relationships in fungal endo-inulinases offer opportunities to develop superior enzymes for the production of specific IOS formulations to improve plant and animal health (priming agents, prebiotics).


Assuntos
Inulina , Oligossacarídeos , Inulina/metabolismo , Oligossacarídeos/química , Glicosídeo Hidrolases/metabolismo , Botrytis/metabolismo , Aspergillus niger
2.
J Exp Bot ; 73(12): 4214-4235, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35383363

RESUMO

Carbohydrates such as fructans can be involved in priming or defence stimulation, and hence potentially provide new strategies for crop protection against biotic stress. Chicory (Cichorium intybus) is a model plant for fructan research and is a crop with many known health benefits. Using the chicory-Botrytis cinerea pathosystem, we tested the effectiveness of fructan-induced immunity, focussing on different plant and microbial fructans. Sugar dynamics were followed after priming and subsequent pathogen infection. Our results indicated that many higher plants might detect extracellular levan oligosaccharides (LOS) of microbial origin, while chicory also detects extracellular small inulin-type fructooligosaccharides (FOS) of endogenous origin, thus differing from the findings of previous fructan priming studies. No clear positive effects were observed for inulin or mixed-type fructans. An elicitor-specific burst of reactive oxygen species was observed for sulfated LOS, while FOS and LOS both behaved as genuine priming agents. In addition, a direct antifungal effect was observed for sulfated LOS. Intriguingly, LOS priming led to a temporary increase in apoplastic sugar concentrations, mainly glucose, which could trigger downstream responses. Total sugar and starch contents in total extracts of LOS-primed leaves were higher after leaf detachment, indicating they could maintain their metabolic activity. Our results indicate the importance of balancing intra- and extracellular sugar levels (osmotic balance) in the context of 'sweet immunity' pathways.


Assuntos
Cichorium intybus , Botrytis , Carboidratos , Cichorium intybus/metabolismo , Frutanos/metabolismo , Inulina/metabolismo , Oligossacarídeos/farmacologia , Plantas/metabolismo , Açúcares/metabolismo
3.
Biomolecules ; 12(3)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35327562

RESUMO

New strategies are required for crop protection against biotic stress. Naturally derived molecules, including carbohydrates such as fructans, can be used in priming or defense stimulation. Rocket (Eruca sativa) is an important leafy vegetable and a good source of antioxidants. Here, we tested the efficacy of fructan-induced immunity in the Botrytis cinerea pathosystem. Different fructan types of plant and microbial origin were considered and changes in sugar dynamics were analyzed. Immune resistance increased significantly after priming with natural and sulfated levan oligosaccharides (LOS). No clear positive effects were observed for fructo-oligosaccharides (FOS), inulin or branched-type fructans. Only sulfated LOS induced a direct ROS burst, typical for elicitors, while LOS behaved as a genuine priming compound. Total leaf sugar levels increased significantly both after LOS priming and subsequent infection. Intriguingly, apoplastic sugar levels temporarily increased after LOS priming but not after infection. We followed LOS and small soluble sugar dynamics in the apoplast as a function of time and found a temporal peak in small soluble sugar levels. Although similar dynamics were also found with inulin-type FOS, increased Glc and FOS levels may benefit B. cinerea. During LOS priming, LOS- and/or Glc-dependent signaling may induce downstream sweet immunity responses.


Assuntos
Frutanos , Inulina , Botrytis , Carboidratos , Frutanos/farmacologia , Oligossacarídeos/farmacologia , Açúcares
4.
J Exp Bot ; 73(5): 1602-1622, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750605

RESUMO

Fructan metabolism in bacteria and plants relies on fructosyltransferases and fructanases. Plant fructanases (fructan exohydrolase, FEH) only hydrolyse terminal fructose residues. Levan (ß-2,6 linkages) is the most abundant fructan type in bacteria. Dicot fructan accumulators, such as chicory (Cichorium intybus), accumulate inulin (ß-2,1 linkages), harbouring several 1-FEH isoforms for their degradation. Here, a novel chicory fructanase with high affinity for levan was characterized, providing evidence that such enzymes widely occur in higher plants. It is adapted to common microbial fructan profiles, but has low affinity towards chicory inulin, in line with a function in trimming of microbial fructans in the extracellular environment. Docking experiments indicate the importance of an N-glycosylation site close to the active site for substrate specificity. Optimal pH and temperature for levan hydrolysis are 5.0 and 43.7 °C, respectively. Docking experiments suggested multiple substrate binding sites and levan-mediated enzyme dimerization, explaining the observed positive cooperativity. Alignments show a single amino acid shift in the position of a conserved DXX(R/K) couple, typical for sucrose binding in cell wall invertases. A possible involvement of plant fructanases in levan trimming is discussed, in line with the emerging 'fructan detour' concepts, suggesting that levan oligosaccharides act as signalling entities during plant-microbial interactions.


Assuntos
Cichorium intybus , Sequência de Aminoácidos , Cichorium intybus/metabolismo , Frutanos/metabolismo , Glicosídeo Hidrolases/metabolismo , beta-Frutofuranosidase/metabolismo
5.
Appl Microbiol Biotechnol ; 102(21): 9207-9220, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30120521

RESUMO

Fructans, homopolymers of fructose produced by fructosyltransferases (FTs), are emerging as intriguing components in halophiles since they are thought to be associated with osmotic stress tolerance and overall fitness of microorganisms and plants under high-salinity conditions. Here, we report on the full characterization of the first halophilic FT, a levansucrase from Halomonas smyrnensis AAD6T (HsLsc; EC 2.4.1.10). The encoding gene (lsc) was cloned into a vector with a 6xHis Tag at its C-terminus, then expressed in Escherichia coli. The purified recombinant enzyme (47.3 kDa) produces levan and a wide variety of fructooligosaccharides from sucrose, but only in the presence of high salt concentrations (> 1.5 M NaCl). HsLsc showed Hill kinetics and pH and temperature optima of 5.9 and 37 °C, respectively. Interestingly, HsLsc was still very active at salt concentrations close to saturation (4.5 M NaCl) and was selectively inhibited by divalent cations. The enzyme showed high potential in producing novel saccharides derived from raffinose as both fructosyl donor and acceptor and cellobiose, lactose, galactose, and ʟ-arabinose as fructosyl acceptors. With its unique biochemical characteristics, HsLsc is an important enzyme for future research and potential industrial applications in a world faced with drought and diminishing freshwater supplies.


Assuntos
Halomonas/metabolismo , Hexosiltransferases/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Escherichia coli/metabolismo , Frutanos/metabolismo , Frutose/metabolismo , Cinética , Oligossacarídeos/metabolismo , Rafinose/metabolismo , Alinhamento de Sequência , Sacarose/metabolismo
6.
Biotechnol Adv ; 36(5): 1524-1539, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29935267

RESUMO

Saline and hypersaline environments make up the largest ecosystem on earth and the organisms living in such water-restricted environments have developed unique ways to cope with high salinity. As such these organisms not only carry significant industrial potential in a world where freshwater supplies are rapidly diminishing, but they also shed light upon the origins and extremes of life. One largely overlooked and potentially important feature of many salt-loving organisms is their ability to produce fructans, fructose polymers widely found in various mesophilic Eubacteria and plants, with potential functions as storage carbohydrates, aiding stress tolerance, and acting as virulence factors or signaling molecules. Intriguingly, within the whole archaeal domain of life, Archaea possessing putative fructan biosynthetic enzymes were found to belong to the extremely halophilic class of Halobacteria only, indicating a strong, yet unexplored link between the fructan syndrome and salinity. In fact, this link may indeed lead to novel strategies in fighting the global salinization problem. Hence this review explores the unknown world of fructanogenic salt-loving organisms, where water scarcity is the main stress factor for life. Within this scope, prokaryotes and plants of the saline world are discussed in detail, with special emphasis on their salt adaptation mechanisms, the potential roles of fructans and fructosyltransferase enzymes in adaptation and survival as well as future aspects for all fructanogenic salt-loving domains of life.


Assuntos
Frutanos , Halobacteriales , Tolerância ao Sal , Plantas Tolerantes a Sal , Frutanos/química , Frutanos/metabolismo , Halobacteriales/química , Halobacteriales/enzimologia , Halobacteriales/fisiologia , Hexosiltransferases , Salinidade , Plantas Tolerantes a Sal/química , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/fisiologia , Cloreto de Sódio
7.
Plant Cell Environ ; 41(1): 16-38, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28925070

RESUMO

Fructans are multifunctional fructose-based water soluble carbohydrates found in all biological kingdoms but not in animals. Most research has focused on plant and microbial fructans and has received a growing interest because of their practical applications. Nevertheless, the origin of fructan production, the so-called "fructan syndrome," is still unknown. Why fructans only occur in a limited number of plant and microbial species remains unclear. In this review, we provide an overview of plant and microbial fructan research with a focus on fructans as an adaptation to the environment and their role in (a)biotic stress tolerance. The taxonomical and biogeographical distribution of fructans in both kingdoms is discussed and linked (where possible) to environmental factors. Overall, the fructan syndrome may be related to water scarcity and differences in physicochemical properties, for instance, water retaining characteristics, at least partially explain why different fructan types with different branching levels are found in different species. Although a close correlation between environmental stresses and fructan production is quite clear in plants, this link seems to be missing in microbes. We hypothesize that this can be at least partially explained by differential evolutionary timeframes for plants and microbes, combined with potential redundancy effects.


Assuntos
Bactérias/metabolismo , Evolução Biológica , Frutanos/metabolismo , Plantas/metabolismo , Enzimas/metabolismo , Frutanos/química , Água
8.
Front Plant Sci ; 7: 2061, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28123393

RESUMO

This perspective paper proposes that endogenous apoplastic fructans in fructan accumulating plants, released after stress-mediated cellular leakage, or increased by exogenous application, can act as damage-associated molecular patterns (DAMPs), priming plant innate immunity through ancient receptors and defense pathways that most probably evolved to react on microbial fructans acting as microbe-associated molecular patterns (MAMPs). The proposed model is placed in an evolutionary perspective. How this type of DAMP signaling may contribute to cross-tolerance and multistress resistance effects in plants is discussed. Besides apoplastic ATP, NAD and fructans, apoplastic polyamines, secondary metabolites, and melatonin may be considered potential players in DAMP-mediated stress signaling. It is proposed that mixtures of DAMP priming formulations hold great promise as natural and sustainable alternatives for toxic agrochemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...