Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(11): e10719, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964789

RESUMO

X chromosome meiotic drive (XCMD) kills Y-bearing sperm during spermatogenesis, leading to the biased transmission of the selfish X chromosome. Despite this strong transmission, some natural XCMD systems remain at low and stable frequencies, rather than rapidly spreading through populations. The reason may be that male carriers can have reduced fitness, as they lose half of their sperm, only produce daughters, and may carry deleterious alleles associated with XCMD. Thus, females may benefit from avoiding mating with male carriers, yielding a further reduction in fitness. Genetic suppressors of XCMD, which block the killing of Y sperm and restore fair Mendelian inheritance, are also common and could prevent the spread of XCMD. However, whether suppressed males are as fit as a wild-type male remains an open question, as the effect that genetic suppressors may have on a male's mating success is rarely considered. Here, we investigate the mating ability of XCMD males and suppressed XCMD males in comparison to wild-type males in the fruit fly Drosophila subobscura, where drive remains at a stable frequency of 20% in wild populations where it occurs. We use both competitive and non-competitive mating trials to evaluate male mating success in this system. We found no evidence that unsuppressed XCMD males were discriminated against. Remarkably, however, their suppressed XCMD counterparts had a higher male mating success compared to wild-type controls. Unsuppressed XCMD males suffered 12% lower offspring production in comparison to wild-type males. This cost appears too weak to counter the transmission advantage of XCMD, and thus the factors preventing the spread of XCMD remain unclear.

2.
Philos Trans R Soc Lond B Biol Sci ; 375(1813): 20200067, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070738

RESUMO

Selfish genetic elements (SGEs) are diverse and near ubiquitous in Eukaryotes and can be potent drivers of evolution. Here, we discuss SGEs that specifically act on sperm to gain a transmission advantage to the next generation. The diverse SGEs that affect sperm often impose costs on carrier males, including damaging ejaculates, skewing offspring sex ratios and in particular reducing sperm-competitive success of SGE-carrying males. How males and females tolerate and mitigate against these costs is a dynamic and expanding area of research. The intense intra-genomic conflict that these selfish elements generate could also have implications for male fertility and spermatogenesis more widely. This article is part of the theme issue 'Fifty years of sperm competition'.


Assuntos
Fertilidade/genética , Sequências Repetitivas de Ácido Nucleico/fisiologia , Espermatozoides/fisiologia , Animais , Humanos , Masculino
3.
Sci Rep ; 10(1): 6392, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286370

RESUMO

The use of agrochemicals in vegetable production could influence the selection for insecticide resistance in malaria vectors. Unfortunately, there is a dearth of information on the potential contribution of agrochemicals to insecticide resistance in Anopheles mosquitoes breeding on vegetable farms in southern Benin. A Knowledge, Attitudes and Practices study was conducted with 75 vegetable farmers from Houeyiho and Seme to determine the main agrochemicals used in vegetable production, and the concentration and frequency of application, among other details. Mosquitoes and breeding water were sampled from the farms for analysis. Bioassays were conducted on mosquitoes, while breeding water was screened for heavy metal and pesticide residue contamination. Lambda-cyhalothrin was the main insecticide (97.5%) used by farmers, and Anopheles coluzzii was the main mosquito identified. This mosquito species was resistant (30-63% mortality rate) to λ-cyhalothrin. It was also observed that 16.7% of the examined breeding sites were contaminated with λ-cyhalothrin residues. Furthermore, copper contamination detected in mosquito breeding sites showed a positive correlation (r = 0.81; P = 0.0017) with mosquito resistance to λ-cyhalothrin. The presence of copper in λ-cyhalothrin-free breeding sites, where mosquitoes have developed resistance to λ-cyhalothrin, suggests the involvement of copper in the insecticide resistance of malaria vectors; this, however, needs further investigation.


Assuntos
Anopheles/fisiologia , Cobre/farmacologia , Fazendas , Resistência a Inseticidas/efeitos dos fármacos , Verduras , Animais , Anopheles/efeitos dos fármacos , Benin , Cruzamento , Geografia , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Nitrilas/toxicidade , Piretrinas/toxicidade
4.
Sci Rep ; 10(1): 6146, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273555

RESUMO

Termites are widely used as a food resource, particularly in Africa and Asia. Markets for insects as food are also expanding worldwide. To inform the development of insect-based foods, we analysed selected minerals (Fe-Mn-Zn-Cu-Mg) in wild-harvested and commercially available termites. Mineral values were compared to selected commercially available insects. Alate termites, of the genera Macrotermes and Odontotermes, showed remarkably high manganese (Mn) content (292-515 mg/100 gdw), roughly 50-100 times the concentrations detected in other insects. Other mineral elements occur at moderate concentrations in all insects examined. On further examination, the Mn is located primarily in the abdomens of the Macrotermes subhyalinus; with scanning electron microscopy revealing small spherical structures highly enriched for Mn. We identify the fungus comb, of Macrotermes subhyanus, as a potential biological source of the high Mn concentrations. Consuming even small quantities of termite alates could exceed current upper recommended intakes for Mn in both adults and children. Given the widespread use of termites as food, a better understanding the sources, distribution and bio-availability of these high Mn concentrations in termite alates is needed.


Assuntos
Insetos Comestíveis/química , Isópteros/química , Manganês/análise , Animais , Isópteros/ultraestrutura , Microscopia Eletrônica de Varredura , Minerais/análise
5.
PeerJ ; 8: e8496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095344

RESUMO

BACKGROUND: Insects form an established part of the diet in many parts of the world and insect food products are emerging into the European and North American marketplaces. Consumer confidence in product is key in developing this market, and accurate labelling of content identity is an important component of this. We used DNA barcoding to assess the accuracy of insect food products sold in the UK. METHODS: We purchased insects sold for human consumption from online retailers in the UK and compared the identity of the material ascertained from DNA barcoding to that stated on the product packaging. To this end, the COI sequence of mitochondrial DNA was amplified and sequenced, and compared the sequences produced to reference sequences in NCBI and the Barcode of Life Data System (BOLD). RESULTS: The barcode identity of all insects that were farmed was consistent with the packaging label. In contrast, disparity between barcode identity and package contents was revealed in two cases of foraged material (mopane worm and winged termites). One case of very broad family-level description was also highlighted, where material described as grasshopper was identified as Locusta migratoria from DNA barcode. CONCLUSION: Overall these data indicate the need to establish tight protocols to validate product identity in this developing market. Maintaining biosafety and consumer confidence rely on accurate and consistent product labelling that provides a clear chain of information from producer to consumer.

6.
Evol Lett ; 2(3): 169-179, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30283674

RESUMO

Meiotically driving sex chromosomes manipulate gametogenesis to increase their transmission at a cost to the rest of the genome. The intragenomic conflicts they produce have major impacts on the ecology and evolution of their host species. However, their ecological dynamics remain poorly understood. Simple population genetic models predict meiotic drivers will rapidly reach fixation in populations and spread across landscapes. In contrast, natural populations commonly show spatial variation in the frequency of drivers, with drive present in clines or mosaics across species ranges. For example, Drosophila subobscura harbors a sex ratio distorting drive chromosome (SRs) at 15-25% frequency in North Africa, present at less than 2% frequency in adjacent southern Spain, and absent in other European populations. Here, we investigate the forces preventing the spread of the driver northward. We show that SRs has remained at a constant frequency in North Africa, and failed to spread in Spain. We find strong evidence that spread is impeded by genetic incompatibility between SRs and Spanish autosomal backgrounds. When we cross SRs from North Africa onto Spanish genetic backgrounds we observe strong incompatibilities specific to hybrids bearing SRs. The incompatibilities increase in severity in F2 male hybrids, leading to almost complete infertility. We find no evidence supporting an alternative hypothesis, that there is resistance to drive in Spanish populations. We conclude that the source of the stepped frequency variation is genetic incompatibility between the SRs chromosome and the genetic backgrounds of the adjacent population, preventing SRs spreading northward. The low frequency of SRs in South Spain is consistent with recurrent gene flow across the Strait of Gibraltar combined with selection against the SRs element through genetic incompatibility. This demonstrates that incompatibilities between drive chromosomes and naïve populations can prevent the spread of drive between populations, at a continental scale.

7.
Trends Ecol Evol ; 31(4): 315-326, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26920473

RESUMO

Meiotic drivers are genetic variants that selfishly manipulate the production of gametes to increase their own rate of transmission, often to the detriment of the rest of the genome and the individual that carries them. This genomic conflict potentially occurs whenever a diploid organism produces a haploid stage, and can have profound evolutionary impacts on gametogenesis, fertility, individual behaviour, mating system, population survival, and reproductive isolation. Multiple research teams are developing artificial drive systems for pest control, utilising the transmission advantage of drive to alter or exterminate target species. Here, we review current knowledge of how natural drive systems function, how drivers spread through natural populations, and the factors that limit their invasion.


Assuntos
Evolução Biológica , Fenômenos Ecológicos e Ambientais/genética , Meiose/genética , Animais , Feminino , Gametogênese/genética , Masculino , Reprodução/genética , Seleção Genética
8.
J Vis Exp ; (98)2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25938821

RESUMO

Mating experiments using Drosophila have contributed greatly to the understanding of sexual selection and behavior. Experiments often require simple, easy and cheap methods to distinguish between individuals in a trial. A standard technique for this is CO2 anaesthesia and then labelling or wing clipping each fly. However, this is invasive and has been shown to affect behavior. Other techniques have used coloration to identify flies. This article presents a simple and non-invasive method for labelling Drosophila that allows them to be individually identified within experiments, using food coloring. This method is used in trials where two males compete to mate with a female. Dyeing allowed quick and easy identification. There was, however, some difference in the strength of the coloration across the three species tested. Data is presented showing the dye has a lower impact on mating behavior than CO2 in Drosophila melanogaster. The impact of CO2 anaesthesia is shown to depend on the species of Drosophila, with D. pseudoobscura and D. subobscura showing no impact, whereas D. melanogaster males had reduced mating success. The dye method presented is applicable to a wide range of experimental designs.


Assuntos
Drosophila melanogaster/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Corantes , Drosophila melanogaster/química , Feminino , Masculino , Asas de Animais/fisiologia
9.
PLoS One ; 6(10): e26318, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022599

RESUMO

Drosophila melanogaster and its close relatives have been extremely important model species in the development of population genetic models that serve to explain patterns of diversity in natural populations, a major goal of evolutionary biology. A detailed picture of the evolutionary history of these species is beginning to emerge, as the relative importance of forces including demographic changes and natural selection is established. A continuing aim is to characterise levels of genetic diversity in a large number of populations of these species, covering a wide geographic area. We have used collections from five previously un-sampled wild populations of D. melanogaster and two of D. simulans, across three continents. We estimated levels of genetic diversity within, and divergence between, these populations, and looked for evidence of genetic structure both between ancestral and derived populations, and amongst derived populations. We also investigated the prevalence of infection with the bacterial endosymbiont Wolbachia. We found that D. melanogaster populations from Sub-Saharan Africa are the most diverse, and that divergence is highest between these and non-Sub-Saharan populations. There is strong evidence for structuring of populations between Sub-Saharan Africa and the rest of the world, and some evidence for weak structure amongst derived populations. Populations from Sub-Saharan Africa also differ in the prevalence of Wolbachia infection, with very low levels of infection compared to populations from the rest of the world.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Drosophila/genética , Drosophila/microbiologia , Variação Genética , Wolbachia/fisiologia , Animais , Feminino , Genética Populacional , Infecções por Bactérias Gram-Negativas/microbiologia , Repetições de Microssatélites/genética , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA