Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Euro Surveill ; 29(17)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38666400

RESUMO

BackgroundFollowing the 2022-2023 mpox outbreak, crucial knowledge gaps exist regarding orthopoxvirus-specific immunity in risk groups and its impact on future outbreaks.AimWe combined cross-sectional seroprevalence studies in two cities in the Netherlands with mathematical modelling to evaluate scenarios of future mpox outbreaks among men who have sex with men (MSM).MethodsSerum samples were obtained from 1,065 MSM attending Centres for Sexual Health (CSH) in Rotterdam or Amsterdam following the peak of the Dutch mpox outbreak and the introduction of vaccination. For MSM visiting the Rotterdam CSH, sera were linked to epidemiological and vaccination data. An in-house developed ELISA was used to detect vaccinia virus (VACV)-specific IgG. These observations were combined with published data on serial interval and vaccine effectiveness to inform a stochastic transmission model that estimates the risk of future mpox outbreaks.ResultsThe seroprevalence of VACV-specific antibodies was 45.4% and 47.1% in Rotterdam and Amsterdam, respectively. Transmission modelling showed that the impact of risk group vaccination on the original outbreak was likely small. However, assuming different scenarios, the number of mpox cases in a future outbreak would be markedly reduced because of vaccination. Simultaneously, the current level of immunity alone may not prevent future outbreaks. Maintaining a short time-to-diagnosis is a key component of any strategy to prevent new outbreaks.ConclusionOur findings indicate a reduced likelihood of large future mpox outbreaks among MSM in the Netherlands under current conditions, but emphasise the importance of maintaining population immunity, diagnostic capacities and disease awareness.


Assuntos
Surtos de Doenças , Homossexualidade Masculina , Humanos , Masculino , Países Baixos/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais , Homossexualidade Masculina/estatística & dados numéricos , Adulto , Pessoa de Meia-Idade , Vacínia/epidemiologia , Anticorpos Antivirais/sangue , Vacinação/estatística & dados numéricos , Adulto Jovem , Modelos Teóricos , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/sangue
2.
J Neuroinflammation ; 20(1): 179, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516868

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients initially develop respiratory symptoms, but they may also suffer from neurological symptoms. People with long-lasting effects after acute infections with severe respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., post-COVID syndrome or long COVID, may experience a variety of neurological manifestations. Although we do not fully understand how SARS-CoV-2 affects the brain, neuroinflammation likely plays a role. METHODS: To investigate neuroinflammatory processes longitudinally after SARS-CoV-2 infection, four experimentally SARS-CoV-2 infected rhesus macaques were monitored for 7 weeks with 18-kDa translocator protein (TSPO) positron emission tomography (PET) using [18F]DPA714, together with computed tomography (CT). The baseline scan was compared to weekly PET-CTs obtained post-infection (pi). Brain tissue was collected following euthanasia (50 days pi) to correlate the PET signal with TSPO expression, and glial and endothelial cell markers. Expression of these markers was compared to brain tissue from uninfected animals of comparable age, allowing the examination of the contribution of these cells to the neuroinflammatory response following SARS-CoV-2 infection. RESULTS: TSPO PET revealed an increased tracer uptake throughout the brain of all infected animals already from the first scan obtained post-infection (day 2), which increased to approximately twofold until day 30 pi. Postmortem immunohistochemical analysis of the hippocampus and pons showed TSPO expression in cells expressing ionized calcium-binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and collagen IV. In the hippocampus of SARS-CoV-2 infected animals the TSPO+ area and number of TSPO+ cells were significantly increased compared to control animals. This increase was not cell type specific, since both the number of IBA1+TSPO+ and GFAP+TSPO+ cells was increased, as well as the TSPO+ area within collagen IV+ blood vessels. CONCLUSIONS: This study manifests [18F]DPA714 as a powerful radiotracer to visualize SARS-CoV-2 induced neuroinflammation. The increased uptake of [18F]DPA714 over time implies an active neuroinflammatory response following SARS-CoV-2 infection. This inflammatory signal coincides with an increased number of TSPO expressing cells, including glial and endothelial cells, suggesting neuroinflammation and vascular dysregulation. These results demonstrate the long-term neuroinflammatory response following a mild SARS-CoV-2 infection, which potentially precedes long-lasting neurological symptoms.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Macaca mulatta , Doenças Neuroinflamatórias , COVID-19/diagnóstico por imagem , Células Endoteliais , Síndrome de COVID-19 Pós-Aguda , Tomografia por Emissão de Pósitrons , Inflamação/diagnóstico por imagem , Colágeno Tipo IV , Receptores de GABA
3.
Sci Rep ; 13(1): 5074, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977691

RESUMO

Influenza virosomes serve as antigen delivery vehicles and pre-existing immunity toward influenza improves the immune responses toward antigens. Here, vaccine efficacy was evaluated in non-human primates with a COVID-19 virosome-based vaccine containing a low dose of RBD protein (15 µg) and the adjuvant 3M-052 (1 µg), displayed together on virosomes. Vaccinated animals (n = 6) received two intramuscular administrations at week 0 and 4 and challenged with SARS-CoV-2 at week 8, together with unvaccinated control animals (n = 4). The vaccine was safe and well tolerated and serum RBD IgG antibodies were induced in all animals and in the nasal washes and bronchoalveolar lavages in the three youngest animals. All control animals became strongly sgRNA positive in BAL, while all vaccinated animals were protected, although the oldest vaccinated animal (V1) was transiently weakly positive. The three youngest animals had also no detectable sgRNA in nasal wash and throat. Cross-strain serum neutralizing antibodies toward Wuhan-like, Alpha, Beta, and Delta viruses were observed in animals with the highest serum titers. Pro-inflammatory cytokines IL-8, CXCL-10 and IL-6 were increased in BALs of infected control animals but not in vaccinated animals. Virosomes-RBD/3M-052 prevented severe SARS-CoV-2, as shown by a lower total lung inflammatory pathology score than control animals.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Macaca mulatta , Virossomos , SARS-CoV-2 , Receptor 7 Toll-Like , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Anticorpos Amplamente Neutralizantes , Vacinas contra COVID-19 , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Nature ; 615(7953): 678-686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922586

RESUMO

Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.


Assuntos
Antivirais , Vírus da Dengue , Dengue , Primatas , Proteínas não Estruturais Virais , Animais , Humanos , Camundongos , Antivirais/efeitos adversos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Dengue/tratamento farmacológico , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Viral , Técnicas In Vitro , Terapia de Alvo Molecular , Primatas/virologia , Ligação Proteica/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
5.
Nat Med ; 29(1): 270-278, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257333

RESUMO

In July 2022, the ongoing monkeypox (MPX) outbreak was declared a public health emergency of international concern. Modified vaccinia Ankara-Bavarian Nordic (MVA-BN, also known as Imvamune, JYNNEOS or Imvanex) is a third-generation smallpox vaccine that is authorized and in use as a vaccine against MPX. To date, there are no data showing MPX virus (MPXV)-neutralizing antibodies in vaccinated individuals nor vaccine efficacy against MPX. Here we show that MPXV-neutralizing antibodies can be detected after MPXV infection and after historic smallpox vaccination. However, a two-shot MVA-BN immunization series in non-primed individuals yields relatively low levels of MPXV-neutralizing antibodies. Dose-sparing of an MVA-based influenza vaccine leads to lower MPXV-neutralizing antibody levels, whereas a third vaccination with the same MVA-based vaccine significantly boosts the antibody response. As the role of MPXV-neutralizing antibodies as a correlate of protection against disease and transmissibility is currently unclear, we conclude that cohort studies following vaccinated individuals are necessary to assess vaccine efficacy in at-risk populations.


Assuntos
Vacinas contra Influenza , Mpox , Humanos , Anticorpos Neutralizantes , Monkeypox virus , Anticorpos Antivirais , Vaccinia virus , Vacinação
6.
Emerg Infect Dis ; 28(9): 1920-1923, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925013

RESUMO

We detected a highly divergent SARS-CoV-2 Alpha variant in an immunocompromised person several months after the latest detection of the Alpha variant in the Netherlands. The patient was infected for 42 weeks despite several treatment regimens and disappearance of most clinical symptoms. We identified several potential immune escape mutations in the spike protein.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , COVID-19/imunologia , Humanos , Hospedeiro Imunocomprometido , Países Baixos , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética
7.
Nucl Med Biol ; 112-113: 1-8, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35660200

RESUMO

RATIONALE: The aim of this study was to investigate the application of [18F]DPA714 to visualize the inflammation process in the lungs of SARS-CoV-2-infected rhesus monkeys, focusing on the presence of pulmonary lesions, activation of mediastinal lymph nodes and surrounded lung tissue. METHODS: Four experimentally SARS-CoV-2 infected rhesus monkeys were followed for seven weeks post infection (pi) with a weekly PET-CT using [18F]DPA714. Two PET images, 10 min each, of a single field-of-view covering the chest area, were obtained 10 and 30 min after injection. To determine the infection process swabs, blood and bronchoalveolar lavages (BALs) were obtained. RESULTS: All animals were positive for SARS-CoV-2 in both the swabs and BALs on multiple timepoints pi. The initial development of pulmonary lesions was already detected at the first scan, performed 2-days pi. PET revealed an increased tracer uptake in the pulmonary lesions and mediastinal lymph nodes of all animals from the first scan obtained after infection and onwards. However, also an increased uptake was detected in the lung tissue surrounding the lesions, which persisted until day 30 and then subsided by day 37-44 pi. In parallel, a similar pattern of increased expression of activation markers was observed on dendritic cells in blood. PRINCIPAL CONCLUSIONS: This study illustrates that [18F]DPA714 is a valuable radiotracer to visualize SARS-CoV-2-associated pulmonary inflammation, which coincided with activation of dendritic cells in blood. [18F]DPA714 thus has the potential to be of added value as diagnostic tracer for other viral respiratory infections.


Assuntos
COVID-19 , Pneumonia , Animais , COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/patologia , Macaca mulatta , Pneumonia/diagnóstico por imagem , Pneumonia/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Pirazóis , Pirimidinas , SARS-CoV-2
8.
NPJ Vaccines ; 7(1): 54, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585071

RESUMO

Rift Valley fever virus (RVFV) is an emerging mosquito-borne bunyavirus that is highly pathogenic to wild and domesticated ruminants, camelids, and humans. While animals are exclusively infected via mosquito bites, humans can also be infected via contact with contaminated tissues or blood. No human vaccine is available and commercialized veterinary vaccines do not optimally combine efficacy with safety. We previously reported the development of two novel live-attenuated RVF vaccines, created by splitting the M genome segment and deleting the major virulence determinant NSs. The vaccine candidates, referred to as the veterinary vaccine vRVFV-4s and the human vaccine hRVFV-4s, were shown to induce protective immunity in multiple species after a single vaccination. Anticipating accidental exposure of humans to the veterinary vaccine and the application of hRVFV-4s to humans, the safety of each vaccine was evaluated in the most susceptible nonhuman primate model, the common marmoset (Callithrix jacchus). Marmosets were inoculated with high doses of each vaccine and were monitored for clinical signs as well as for vaccine virus dissemination, shedding, and spreading to the environment. To accurately assess the attenuation of both vaccine viruses, separate groups of marmosets were inoculated with the parent wild-type RVFV strains. Both wild-type strains induced high viremia and disseminated to primary target organs, associated with mild-to-severe morbidity. In contrast, both vaccines were well tolerated with no evidence of dissemination and shedding while inducing potent neutralizing antibody responses. The results of the studies support the unprecedented safety profile of both vaccines for animals and humans.

9.
Viruses ; 14(4)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458506

RESUMO

SARS-CoV-2 causes acute respiratory disease, but many patients also experience neurological complications. Neuropathological changes with pronounced neuroinflammation have been described in individuals after lethal COVID-19, as well as in the CSF of hospitalized patients with neurological complications. To assess whether neuropathological changes can occur after a SARS-CoV-2 infection, leading to mild-to-moderate disease, we investigated the brains of four rhesus and four cynomolgus macaques after pulmonary disease and without overt clinical symptoms. Postmortem analysis demonstrated the infiltration of T-cells and activated microglia in the parenchyma of all infected animals, even in the absence of viral antigen or RNA. Moreover, intracellular α-synuclein aggregates were found in the brains of both macaque species. The heterogeneity of these manifestations in the brains indicates the virus' neuropathological potential and should be considered a warning for long-term health risks, following SARS-CoV-2 infection.


Assuntos
COVID-19 , Encefalite , alfa-Sinucleína , Animais , Encefalite/metabolismo , Encefalite/virologia , Macaca mulatta/virologia , Agregados Proteicos , SARS-CoV-2 , alfa-Sinucleína/metabolismo
10.
Front Immunol ; 13: 845887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371043

RESUMO

Novel safe, immunogenic, and effective vaccines are needed to control the COVID-19 pandemic, caused by SARS-CoV-2. Here, we describe the safety, robust immunogenicity, and potent efficacy elicited in rhesus macaques by a modified vaccinia virus Ankara (MVA) vector expressing a full-length SARS-CoV-2 spike (S) protein (MVA-S). MVA-S vaccination was well tolerated and induced S and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against SARS-CoV-2 and several variants of concern. S-specific IFNγ, but not IL-4, -producing cells were also elicited. After SARS-CoV-2 challenge, vaccinated animals showed a significant strong reduction of virus loads in bronchoalveolar lavages (BAL) and decreased levels in throat and nasal mucosa. Remarkably, MVA-S also protected macaques from fever and infection-induced cytokine storm. Computed tomography and histological examination of the lungs showed reduced lung pathology in MVA-S-vaccinated animals. These findings favor the use of MVA-S as a potential vaccine for SARS-CoV-2 in clinical trials.


Assuntos
COVID-19 , Vaccinia virus , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Vaccinia virus/genética
11.
Front Immunol ; 13: 857440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479095

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic. Here, we present non-human primate immunogenicity and protective efficacy data generated with the capsid virus-like particle (cVLP)-based vaccine ABNCoV2 that has previously demonstrated immunogenicity in mice. In rhesus macaques, a single vaccination with either 15 or 100 µg ABNCoV2 induced binding and neutralizing antibodies in a dose-dependent manner, at levels comparable to those measured in human convalescents. A second vaccine administration led to a >50-fold increase in neutralizing antibodies, with 2-log higher mean levels in the 100-µg ABNCoV2 group compared with convalescent samples. Upon SARS-CoV-2 challenge, a significant reduction in viral load was observed for both vaccine groups relative to the challenge control group, with no evidence of enhanced disease. Remarkably, neutralizing antibody titers against an original SARS-CoV-2 isolate and against variants of concern were comparable, indicating a potential for broad protection afforded by ABNCoV2, which is currently in clinical testing.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Capsídeo , Proteínas do Capsídeo , Humanos , Macaca mulatta , SARS-CoV-2
12.
One Health ; 13: 100313, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34458548

RESUMO

Assays to measure SARS-CoV-2-specific neutralizing antibodies are important to monitor seroprevalence, to study asymptomatic infections and to reveal (intermediate) hosts. A recently developed assay, the surrogate virus-neutralization test (sVNT) is a quick and commercially available alternative to the "gold standard" virus neutralization assay using authentic virus, and does not require processing at BSL-3 level. The assay relies on the inhibition of binding of the receptor binding domain (RBD) on the spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) by antibodies present in sera. As the sVNT does not require species- or isotype-specific conjugates, it can be similarly used for antibody detection in human and animal sera. In this study, we used 298 sera from PCR-confirmed COVID-19 patients and 151 sera from patients confirmed with other coronavirus or other (respiratory) infections, to evaluate the performance of the sVNT. To analyze the use of the assay in a One Health setting, we studied the presence of RBD-binding antibodies in 154 sera from nine animal species (cynomolgus and rhesus macaques, ferrets, rabbits, hamsters, cats, cattle, mink and dromedary camels). The sVNT showed a moderate to high sensitivity and a high specificity using sera from confirmed COVID-19 patients (91.3% and 100%, respectively) and animal sera (93.9% and 100%), however it lacked sensitivity to detect low titers. Significant correlations were found between the sVNT outcomes and PRNT50 and the Wantai total Ig and IgM ELISAs. While species-specific validation will be essential, our results show that the sVNT holds promise in detecting RBD-binding antibodies in multiple species.

13.
Viruses ; 13(8)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452537

RESUMO

The post-acute phase of SARS-CoV-2 infection was investigated in rhesus (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis). During the acute phase of infection, SARS-CoV-2 was shed via the nose and throat, and viral RNA was occasionally detected in feces. This phase coincided with a transient change in systemic immune activation. Even after the alleged resolution of the infection, computed tomography (CT) and positron emission tomography (PET)-CT revealed pulmonary lesions and activated tracheobronchial lymph nodes in all animals. Post-mortem histological examination of the lung tissue revealed mostly marginal or resolving minimal lesions that were indicative of SARS-CoV-2 infection. Evidence for SARS-CoV-2-induced histopathology was also found in extrapulmonary tissue samples, such as conjunctiva, cervical, and mesenteric lymph nodes. However, 5-6 weeks after SARS-CoV-2 exposure, upon necropsy, viral RNA was still detectable in a wide range of tissue samples in 50% of the macaques and included amongst others the heart, the respiratory tract and surrounding lymph nodes, salivary gland, and conjunctiva. Subgenomic messenger RNA was detected in the lungs and tracheobronchial lymph nodes, indicative of ongoing virus replication during the post-acute phase. These results could be relevant for understanding the long-term consequences of COVID-19 in humans.


Assuntos
COVID-19/patologia , COVID-19/virologia , Pulmão/patologia , SARS-CoV-2/fisiologia , Animais , Anticorpos Antivirais/sangue , COVID-19/imunologia , Citocinas/sangue , Modelos Animais de Doenças , Humanos , Pulmão/virologia , Linfonodos/patologia , Linfonodos/fisiopatologia , Macaca fascicularis , Macaca mulatta , RNA Mensageiro/análise , RNA Viral/análise , Sistema Respiratório/patologia , Sistema Respiratório/virologia , SARS-CoV-2/imunologia , Replicação Viral
14.
PLoS One ; 16(7): e0252941, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242213

RESUMO

Medical imaging as method to assess the longitudinal process of a SARS-CoV-2 infection in non-human primates is commonly used in research settings. Bronchoalveolar lavage (BAL) is regularly used to determine the local virus production and immune effects of SARS-CoV-2 in the lower respiratory tract. However, the potential interference of those two diagnostic modalities is unknown in non-human primates. The current study investigated the effect and duration of BAL on computed tomography (CT) in both healthy and experimentally SARS-CoV-2-infected female rhesus macaques (Macaca mulatta). In addition, the effect of subsequent BALs was reviewed. Thorax CTs and BALs were obtained from four healthy animals and 11 experimentally SARS-CoV-2-infected animals. From all animals, CTs were obtained just before BAL, and 24 hours post-BAL. Additionally, from the healthy animals, CTs immediately after, and four hours post-BAL were obtained. Thorax CTs were evaluated for alterations in lung density, measured in Hounsfield units, and a visual semi-quantitative scoring system. An increase in the lung density was observed on the immediately post-BAL CT but resolved within 24 hours in the healthy animals. In the infected animals, a significant difference in both the lung density and CT score was still found 24 hours after BAL. Furthermore, the differences between time points in CT score were increased for the second BAL. These results indicate that the effect of BAL on infected lungs is not resolved within the first 24 hours. Therefore, it is important to acknowledge the interference between BAL and CT in rhesus macaques.


Assuntos
COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , SARS-CoV-2 , Tomografia Computadorizada por Raios X , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Pulmão/virologia , Macaca mulatta , Tórax/diagnóstico por imagem , Tórax/virologia
15.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33909009

RESUMO

Safe and effective coronavirus disease-19 (COVID-19) vaccines are urgently needed to control the ongoing pandemic. While single-dose vaccine regimens would provide multiple advantages, two doses may improve the magnitude and durability of immunity and protective efficacy. We assessed one- and two-dose regimens of the Ad26.COV2.S vaccine candidate in adult and aged nonhuman primates (NHPs). A two-dose Ad26.COV2.S regimen induced higher peak binding and neutralizing antibody responses compared with a single dose. In one-dose regimens, neutralizing antibody responses were stable for at least 14 wk, providing an early indication of durability. Ad26.COV2.S induced humoral immunity and T helper cell (Th cell) 1-skewed cellular responses in aged NHPs that were comparable to those in adult animals. Aged Ad26.COV2.S-vaccinated animals challenged 3 mo after dose 1 with a SARS-CoV-2 spike G614 variant showed near complete lower and substantial upper respiratory tract protection for both regimens. Neutralization of variants of concern by NHP sera was reduced for B.1.351 lineages while maintained for the B.1.1.7 lineage independent of Ad26.COV2.S vaccine regimen.


Assuntos
Adenoviridae/imunologia , Envelhecimento/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Temperatura Corporal , Lavagem Broncoalveolar , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Relação Dose-Resposta Imunológica , Feminino , Imunidade Humoral , Cinética , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Masculino , Glicoproteína da Espícula de Coronavírus/metabolismo , Resultado do Tratamento , Vacinação , Carga Viral
16.
Vaccines (Basel) ; 9(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669414

RESUMO

BACKGROUND: Recently, an emerging flavivirus, Usutu virus (USUV), has caused an epidemic among birds in Europe, resulting in a massive die-off in Eurasian blackbirds. Currently found only in Europe and Africa, it can be envisioned that Usutu virus will follow the path of other flaviviruses, like West Nile virus and Zika virus, and will spread via its mosquito vectors and bird hosts to other parts of the world. Several cases of human infections by Usutu virus have already been published. Anticipating this spread, development of an efficacious vaccine would be highly desirable. METHOD: This study describes the production in E. coli, purification, and refolding of a partial USUV envelope protein. Prior to immunization, the protein was characterized using size exclusion chromatography, transmission electron microscopy and dynamic light scattering, showing the limited presence of virus-like structures, indicating that the protein solution is probably a mixture of mono and multimeric envelope proteins. RESULTS: Immunizations of two rabbits with the refolded E-protein fraction, mixed with a strong adjuvant, resulted in the generation of neutralizing antibodies, as evidenced in an in vitro assay. DISCUSSION: The way forward towards a subunit vaccine against Usutu virus infection is discussed.

17.
Nature ; 590(7845): 320-325, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33260195

RESUMO

The expanding pandemic of coronavirus disease 2019 (COVID-19) requires the development of safe, efficacious and fast-acting vaccines. Several vaccine platforms are being leveraged for a rapid emergency response1. Here we describe the development of a candidate vaccine (YF-S0) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that uses live-attenuated yellow fever 17D (YF17D) vaccine as a vector to express a noncleavable prefusion form of the SARS-CoV-2 spike antigen. We assess vaccine safety, immunogenicity and efficacy in several animal models. YF-S0 has an excellent safety profile and induces high levels of SARS-CoV-2 neutralizing antibodies in hamsters (Mesocricetus auratus), mice (Mus musculus) and cynomolgus macaques (Macaca fascicularis), and-concomitantly-protective immunity against yellow fever virus. Humoral immunity is complemented by a cellular immune response with favourable T helper 1 polarization, as profiled in mice. In a hamster model2 and in macaques, YF-S0 prevents infection with SARS-CoV-2. Moreover, a single dose conferred protection from lung disease in most of the vaccinated hamsters within as little as 10 days. Taken together, the quality of the immune responses triggered and the rapid kinetics by which protective immunity can be attained after a single dose warrant further development of this potent SARS-CoV-2 vaccine candidate.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vetores Genéticos/genética , SARS-CoV-2/imunologia , Vacinas Atenuadas/imunologia , Vacina contra Febre Amarela/genética , Animais , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/genética , Cricetinae , Modelos Animais de Doenças , Feminino , Glicosilação , Macaca fascicularis/genética , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Masculino , Mesocricetus/genética , Mesocricetus/imunologia , Mesocricetus/virologia , Camundongos , Segurança , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética
18.
Science ; 368(6494): 1012-1015, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32303590

RESUMO

The current pandemic coronavirus, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), was recently identified in patients with an acute respiratory syndrome, coronavirus disease 2019 (COVID-19). To compare its pathogenesis with that of previously emerging coronaviruses, we inoculated cynomolgus macaques with SARS-CoV-2 or Middle East respiratory syndrome (MERS)-CoV and compared the pathology and virology with historical reports of SARS-CoV infections. In SARS-CoV-2-infected macaques, virus was excreted from nose and throat in the absence of clinical signs and detected in type I and II pneumocytes in foci of diffuse alveolar damage and in ciliated epithelial cells of nasal, bronchial, and bronchiolar mucosae. In SARS-CoV infection, lung lesions were typically more severe, whereas they were milder in MERS-CoV infection, where virus was detected mainly in type II pneumocytes. These data show that SARS-CoV-2 causes COVID-19-like disease in macaques and provides a new model to test preventive and therapeutic strategies.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Pulmão/patologia , Macaca fascicularis , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Envelhecimento , Animais , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Feminino , Pulmão/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Pandemias , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/patologia , Síndrome Respiratória Aguda Grave/virologia , Replicação Viral , Eliminação de Partículas Virais
19.
Vaccine ; 38(17): 3305-3312, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32197924

RESUMO

Dengue fever is one of the most wide-spread vector-borne diseases in the world. Although dengue-associated mortality is low, morbidity and economic impact are high. Current licensed vaccines are limited and mediate only partial protection, thus a cost-effective vaccine with improved efficacy is strongly needed. In this work, recombinant dengue serotype 1 E protein was produced in E. coli, inclusion bodies were isolated and the E protein solubilized in urea and purified using an immobilized metal chelate affinity column. The protein was refolded by dialysis in order to obtain virus-like particles (VLPs). Particle assembly was confirmed using size-exclusion chromatography, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy and stimulated emission depletion fluorescence (STED) microscopy. Particle diameter was strongly dependent on temperature, pH, buffer salt composition, and addition of L-arginine. Particles were stable in carbonate buffer at pH 9.5 and higher at 4 °C and did not aggregate during short-term temperature increase up to 55 °C. However, on basis of the above analyses, especially the results of DLS, TEM and STED, it was concluded that the particles obtained did not have an optimal virus-like structure and were therefore designated "virus-sized particles" (VSPs) rather than VLPs. Immunization of rabbits with the particles did not induce neutralizing antibodies, despite the recognition of the native virus by rabbit antibodies. As the titers against the immunogen were much higher than against the (heat-inactivated) virus, it is assumed that the conformation of the particles at the time of immunization was not optimal. Studies are currently underway to improve the quality of the E protein virus-sized particles towards true virus-like particles in order to optimize its potential as a dengue vaccine candidate.


Assuntos
Vacinas contra Dengue/biossíntese , Escherichia coli/metabolismo , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Proteínas do Envelope Viral/biossíntese , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Coelhos , Proteínas Recombinantes/biossíntese
20.
J Gen Virol ; 97(10): 2599-2607, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27534537

RESUMO

During human immunodeficiency virus (HIV) infection, soluble CD14 (sCD14) is up-regulated as a consequence of pathological disruption of the gut epithelial barrier, and subsequent increased microbial translocation. Also in hepatitis C virus (HCV)-infected patients with advanced liver fibrosis, increased levels of sCD14 have been reported. Since the liver plays an important role in clearance of translocated bacterial products, hepatic fibrosis may negatively affect clearance and thus contribute to higher sCD14 levels. Chimpanzees (Pan troglodytes) infected with HCV typically show no signs of liver fibrosis. Here, we have tested the hypothesis that increased levels of sCD14 occur in the absence of hepatic fibrosis or microbial translocation in chimpanzees chronically infected with HCV. sCD14 was up-regulated in both HIV/simian immunodeficiency virus (SIV)- and HCV-infected chimpanzees. In HIV/SIV-infected chimpanzees, intestinal fatty acid-binding protein, a marker for gut perturbation, lipopolysaccharide (LPS)-binding-protein and LPS core antibodies, confirm that sCD14 up-regulation was caused by increased microbial translocation. In HCV-infected chimpanzees, no evidence was found for increased microbial translocation despite up-regulation of sCD14. Additionally, the impact of liver fibrosis on microbial translocation was addressed by direct comparison of chimpanzees with a high HCV load and human patients with advanced fibrosis. These data suggest that only in a small minority of HCV patients, hepatic fibrosis corroborates microbial translocation.


Assuntos
Translocação Bacteriana , Infecções por HIV/genética , Infecções por HIV/microbiologia , HIV-1/fisiologia , Hepacivirus/fisiologia , Hepatite C/genética , Receptores de Lipopolissacarídeos/genética , Animais , Modelos Animais de Doenças , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Hepacivirus/genética , Hepatite C/microbiologia , Hepatite C/virologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Receptores de Lipopolissacarídeos/metabolismo , Pan troglodytes , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...