Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 377(2154): 20180408, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31378181

RESUMO

The upper atmosphere of Uranus has been observed to be slowly cooling between 1993 and 2011. New analysis of near-infrared observations of emission from H3+ obtained between 2012 and 2018 reveals that this cooling trend has continued, showing that the upper atmosphere has cooled for 27 years, longer than the length of a nominal season of 21 years. The new observations have offered greater spatial resolution and higher sensitivity than previous ones, enabling the characterization of the H3+ intensity as a function of local time. These profiles peak between 13 and 15 h local time, later than models suggest. The NASA Infrared Telescope Facility iSHELL instrument also provides the detection of a bright H3+ signal on 16 October 2016, rotating into view from the dawn sector. This feature is consistent with an auroral signal, but is the only of its kind present in this comprehensive dataset. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H3+, H5+ and beyond'.

2.
Nature ; 448(7150): 172-5, 2007 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-17625560

RESUMO

The remarkable compositional diversity of volatile ices within comets can plausibly be attributed to several factors, including differences in the chemical, thermal and radiation environments in comet-forming regions, chemical evolution during their long storage in reservoirs far from the Sun, and thermal processing by the Sun after removal from these reservoirs. To determine the relevance of these factors, measurements of the chemistry as a function of depth in cometary nuclei are critical. Fragmenting comets expose formerly buried material, but observational constraints have in the past limited the ability to assess the importance of formative conditions and the effects of evolutionary processes on measured composition. Here we report the chemical composition of two distinct fragments of 73P/Schwassmann-Wachmann 3. The fragments are remarkably similar in composition, in marked contrast to the chemical diversity within the overall comet population and contrary to the expectation that short-period comets should show strong compositional variation with depth in the nucleus owing to evolutionary processing from numerous close passages to the Sun. Comet 73P/Schwassmann-Wachmann 3 is also depleted in the most volatile ices compared to other comets, suggesting that the depleted carbon-chain chemistry seen in some comets from the Kuiper belt reservoir is primordial and not evolutionary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA