Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567260

RESUMO

Coastal wetlands are dynamic ecosystems that exist along a landscape continuum that can range from freshwater forested wetlands to tidal marsh to mudflat communities. Climate-driven stressors, such as sea-level rise, can cause shifts among these communities, resulting in changes to ecological functions and services. While a growing body of research has characterized the landscape-scale impacts of individual climate-driven stressors, little is known about how multiple stressors and their potential interactions will affect ecological functioning of these ecosystems. How will coastal wetlands respond to discrete climate disturbances, such as hurricane sediment deposition events, under future conditions of elevated atmospheric CO2? Will these responses vary among the different wetland communities? We conducted experimental greenhouse manipulations to simulate sediment deposition from a land-falling hurricane under future elevated atmospheric CO2 concentrations (720 ppm CO2). We measured responses of net primary production, decomposition, and elevation change in mesocosms representing four communities along a coastal wetland landscape gradient: freshwater forested wetland, forest/marsh mix, marsh, and mudflat. When Schoenoplectus americanus was present, above- and belowground biomass production was highest, decomposition rates were lowest, and wetland elevation gain was greatest, regardless of CO2 and sediment deposition treatments. Sediment addition initially increased elevation capital in all communities, but post-deposition rates of elevation gain were lower than in mesocosms without added sediment. Together these results indicate that encroachment of oligohaline marshes into freshwater forested wetlands can enhance belowground biomass accumulation and resilience to sea-level rise, and these plant-mediated ecosystem services will be augmented by periodic sediment pulses from storms and restoration efforts.

2.
Ann Bot ; 125(2): 365-376, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31532484

RESUMO

BACKGROUND AND AIMS: Coastal wetlands have evolved to withstand stressful abiotic conditions through the maintenance of hydrologic feedbacks between vegetation production and flooding. However, disruption of these feedbacks can lead to ecosystem collapse, or a regime shift from vegetated wetland to open water. To prevent the loss of critical coastal wetland habitat, we must improve understanding of the abiotic-biotic linkages among flooding and wetland stability. The aim of this research was to identify characteristic landscape patterns and thresholds of wetland degradation that can be used to identify areas of vulnerability, reduce flooding threats and improve habitat quality. METHODS: We measured local- and landscape-scale responses of coastal wetland vegetation to flooding stress in healthy and degrading coastal wetlands. We hypothesized that conversion of Spartina patens wetlands to open water could be defined by a distinct change in landscape configuration pattern, and that this change would occur at a discrete elevation threshold. KEY RESULTS: Despite similarities in total land and water cover, we observed differences in the landscape configuration of vegetated and open water pixels in healthy and degrading wetlands. Healthy wetlands were more aggregated, and degrading wetlands were more fragmented. Generally, greater aggregation was associated with higher wetland elevation and better drainage, compared with fragmented wetlands, which had lower elevation and poor drainage. The relationship between vegetation cover and elevation was non-linear, and the conversion from vegetated wetland to open water occurred beyond an elevation threshold of hydrologic stress. CONCLUSIONS: The elevation threshold defined a transition zone where healthy, aggregated, wetland converted to a degrading, fragmented, wetland beyond an elevation threshold of 0.09 m [1988 North American Vertical Datum (NAVD88)] [0.27 m mean sea level (MSL)], and complete conversion to open water occurred beyond 0.03 m NAVD88 (0.21 m MSL). This work illustrates that changes in landscape configuration can be used as an indicator of wetland loss. Furthermore, in conjunction with specific elevation thresholds, these data can inform restoration and conservation planning to maximize wetland stability in anticipation of flooding threats.


Assuntos
Ecossistema , Áreas Alagadas , Conservação dos Recursos Naturais , Poaceae
3.
Glob Chang Biol ; 24(3): 1224-1238, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29044820

RESUMO

To avoid submergence during sea-level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea-level rise may change. To compare how well mangroves and salt marshes accommodate sea-level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table-marker horizon system. Comparison of land movement with relative sea-level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub-root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small-scale disturbance of the plant canopy also had no effect on elevation trajectories-contrary to work in peat-forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea-level rise.


Assuntos
Mudança Climática , Áreas Alagadas , Avicennia/fisiologia , Congelamento , Mississippi , Poaceae/crescimento & desenvolvimento , Rios , Solo
4.
PLoS One ; 12(9): e0183431, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28902904

RESUMO

Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.


Assuntos
Mudança Climática , Ecossistema , Monitoramento Ambiental/normas , Água do Mar , Áreas Alagadas , Alabama , Monitoramento Ambiental/métodos , Florida , Golfo do México , Serviços de Informação/organização & administração , Serviços de Informação/normas , Louisiana , Mississippi , Projetos de Pesquisa/normas , Estudos de Amostragem , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA